System reliability upper bound assessment for health-aware control of complex systems

Jean C. Salazar
Universitat Politècnica de Catalunya
jean.salazar@upc.edu

Ramon Sarrate
Universitat Politècnica de Catalunya
ramon.sarrate@upc.edu

Fatiha Nejjari
Universitat Politècnica de Catalunya
fatiha.nejjari@upc.edu

Research Objective
This work investigates the possibility of using an approximate computation of the system reliability into a HAC scheme. Specifically, an upper bound of the system reliability will be computed in order to overcome the computational problem of determining the exact system reliability of a complex system and its integration into a health-aware control strategy [1].

Expected Contributions
• A HAC scheme for complex systems based on the system reliability upper bound computation.
• A reduction of the system reliability computation cost by using the upper bound approximation.

Research Details
MPC scheme tuning methodology
1. Enumerate the minimal path sets
 \[P_j \]
2. Compute the structure function
 \[\Phi_j(X) = 1 - \prod_{i=1}^{s} \left(1 - \prod_{j \in P_i} X_j \right) \]
3. Compute the system reliability upper bound
 \[R_{upper} = 1 - \prod_{j=1}^{s} \left(1 - \prod_{i \in P_j} R_i \right) \]
4. Compute the components reliability
 \[R_i(t) = e^{-\int_0^t \lambda_i(v) dv} \cdot \lambda_i(t) = \lambda_i^0 \left(1 + \beta_i \int_0^t |u_i(v)| dv \right) \]
5. Compute the MPC weights based on a normalized component Birnbaum's measure
 \[\rho_{upper,i} = \frac{\partial R_{upper}}{\partial R_i} \cdot \rho(k) = R_{upper}(k) \]

State of Research
Even with the approximate approach, better system reliability results than in the nominal case are obtained.

Next Steps
• These results encourage us to do further research in the domain of HAC for complex systems.
• Investigate the use of a system reliability lower bound approximation to implement the HAC methodology.

Comparative study
Three case studies: exact approach (\(\rho(k) = \hat{I}_{upper}(k) \)), approximate approach (\(\rho(k) = \hat{I}_B(k) \)), nominal approach (\(\rho = 1 \), no reliability feedback).

Acknowledgments and References
This work has been funded by the Spanish Ministry of Science and Technology through the projects CICYT HARCRICS (ref. DPI2014-58104-R), CICYT SCAV (ref. DPI2017-88403-R), and by the DGR of Generalitat de Catalunya (SAC group Ref. 2017/SGR/482).