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ABSTRACT 

Fiber ropes are steadily gaining in popularity for offshore 
lifting purposes. One limiting factor is many fibers’ low 
tolerance for high temperatures. Measurements of rope 
temperature and changes in thermo-physical properties are 
therefore highly relevant, a task which may be performed 
using an infrared camera. Chemometrics is one tool among 
the many techniques available for image processing. The 
present paper details results from applying chemometrics to 
infrared images obtained from recent cyclic-bend-over-
sheave testing. It is shown how this tool contributes to 
separating the various phenomena going on, like changes in 
thermal properties, vertical rope movement, surface 
degradation, and rope twist. A brief discussion on the 
applicability for real-life monitoring is also given. 

1. INTRODUCTION 

1.1. Background 

Fiber ropes are steadily gaining in popularity for offshore 
lifting purposes. The reason is its high strength and lifetime, 
as well as lack of corrosion problems in water, combined with 
low weight. Consequently, replacing steel wire ropes with 
fiber ropes allows the same crane to lift more weight than 
before, since the weight of the rope itself is nearly eliminated. 
Alternatively, the same weight can be lifted by smaller 
cranes, possibly even on smaller ships.  

Fiber ropes come in many varieties, with different properties, 
and thus each application requires careful selection of the 
right fiber rope type. This selection is a complex process, as 
stated by DNV GL (2015), «The ability of a synthetic fibre 

line to carry load depends on the magnitudes and durations of 
tensions to be applied, the magnitudes and durations of 
preceding loading, and on the associated temperatures within 
the load-bearing material». 

On this background, and since several of the partners in the 
SFI for Offshore Mechatronics (SFI for Offshore 
Mechatronics, 2019) are producing fiber rope cranes 
(MacGregor, 2017; National Oilwell Varco, 2018), 
monitoring techniques for fiber ropes was chosen as a topic 
for the SFI, starting in 2016. In the present article, we will 
focus on temperatures and thermal properties. Inspired by the 
work of Davies et al. (Davies et al., 2013), modelling and lab 
tests have already been performed by the group (Falconer, 
Nordgård-Hansen, & Grasmo, 2018; Oland, Bossolini, 
Nielsen, Sørensen, & Veje, 2017). Due to the importance of 
temperature in the degradation of fiber ropes, and due to the 
promising results so far, a thermal camera was subsequently 
used to observe fiber ropes during Cyclic Bend Over Sheave 
(CBOS) testing. This test method is particularly relevant for 
mimicking active heave compensation, which is important in 
offshore lifting. 

1.2. Chemometrics 

The sequence of images from a thermal video camera is a 
very high-dimensional time series. Interpreting such a 
megavariate stream of data can be overwhelming. The 
measurement noise in the data for each time point in each 
camera pixel may be random and complex to deal with in 
detail, since there is no pattern to white noise. However, the 
interesting variations in the data come from the underlying 
physical phenomena that cause systematic patterns of 
variation in the thermal video data (thermal friction effects, 
physical rope changes etc.). This may be picked up by a 
bilinear model. 

Ellen Nordgård-Hansen et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original author and source are credited. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019 

2 

Principal Component Analysis (PCA) is a tool to extract 
systematic variation patterns from a data table, to gain 
knowledge about the most dominant patterns of covariation. 
It requires that the data is structured in rows representing the 
samples or observations, (e.g. time points), and columns 
representing variables or attributes (e.g. spatial positions, i.e. 
pixels). A data set X with n rows or observations and m 
columns or pixels can then be described by the bilinear 
structure model of Eq. (1).  

 𝑋 = 𝑇𝑃 + 𝐸 (1) 

Where each column in T is a time series score vector 𝑡 ∈
ℝ × , and each column in P is a spatial loading vector 𝑝 ∈
ℝ × , T= [ta, a=1, 2, …, A] has in total A columns, since the 
A first PCs are intended to represent the main patterns of 
systematic variations among the m variables. Conversely, the 
spatial loading matrix P = [pa, a=1, 2, …, A] represents the 
corresponding spatial covariation patterns. The last term, E, 
contains the unmodelled residuals. The first component 
describes as much as possible of the variance, the second one 
is orthogonal to the first and describes as much as possible of 
the remaining variance, etc., until all variance is described 
when m components are included. If the optimal number of 
PCs, A, has been found, E represents the remaining 
unsystematic errors, e.g. random measurement noise.  

Mathematically, the columns of P are the eigenvectors of the 
covariance matrix 𝑋 𝑋. For images, each of these vectors 
can be seen as eigenimages, and represented as images. The 
scores tell how much of each of these images are required to 
represent each of the original images.  

Most data of interest contain information that is replicated 
among its samples, and which has mutually dependent 
variables. This is where PCA is useful, through removing 
redundant information, whilst highlighting covariations. One 
might not be able to effectively discern different groups 
within the data by using univariate approaches but by looking 
at their covariances one could separate groups which 
otherwise would be difficult.  

1.3. Article structure 

The present article initially describes the experimental setup, 
including the software used for data analysis. Then, some 
modelling results are presented, followed by a discussion of 
how this leads to improved understanding of what happens to 
the rope during CBOS testing. Finally, implications for 
online real-life testing are discussed.  

2. EXPERIMENTAL 

2.1. Equipment 

The ropes were tested on a machine for CBOS testing. The 
rope is mounted in a loop with a small test sheave at one end 
and a larger driving sheave at the opposite end. The sheaves 

then turn to make the rope move back and forth over the 
sheaves, resulting in wear from the repeated bending and 
straightening of the rope. A cylinder keeps the rope tension 
constant over time by increasing the sheave-to-sheave 
distance as required.  

The machine is built by DEP Engineering in conjunction with 
NORCE, the University of Agder (UiA), and Mechatronics 
Innovation Lab (MIL), and is placed at the MIL’s premises 
in Grimstad, Norway. Some technical details are given in 
Table 1.  

Table 1. CBOS machine technical details 
Property Value 
Rope Diameter [mm] 20 – 30 
Machine Dimensions [m] 12 x 1.3 x 2.2 
Test Sheave Diameter [mm] 400 – 800 
Maximum Lune Pull [kN] 150 
Driving Sheave Diameter [mm] 1 000 

 
During cycling, a part of the rope never reaches the test 
sheave, while another part of the rope reaches the sheave and 
is just bent once before the sheave turns. This is rope in the 
so-called single-bend zone. Finally, a part of the rope reaches 
the sheave and is bent, but then goes on to be straightened out 
again after leaving the sheave at the bottom. This is rope in 
the so-called double-bend zone. 

A Fluke 414D Distance Measuring Laser registers the 
cylinder position required to keep constant tension, thereby 
giving a measure of the rope creep.  

Five optical cameras and one thermal camera registers the 
rope state during each test. In the present work, only the 
thermal camera data is used, which is of the type FLIR 
A6752sc. The image size is 640x512 pixels, and the accuracy 
is ±1 °C or ± 1 % of reading.  

2.2. Tests 

IR images were registered for tests on three different ropes, 
the first two of the same kind, the third of a slightly different 
kind, optimized for good bending performance. All ropes 
were 12-strand High-Modulus Polyethylene (HMPE) ropes 
having a diameter of 28 mm. 

The first two ropes were tested until they broke, after about 
50 000 cycles, or close to running a full week in time. The 
third rope did not break, but the test was stopped after about 
70 000 cycles, or just over a week, when there was severe 
rope damage close to the driving sheave. 

2.3. Data retrieval 

The thermal camera recorded images at 100 Hz. In order to 
limit the data storage requirements, 2 000 frames were 
recorded each 12 000 second, meaning there is about 3.5 
hours between each recording.  
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For rope 1, csv files were created from every 10th frame from 
every recording, meaning there is about 200 files from each 
recording.  

For rope 2, csv files were created from every 10th frame from 
nine evenly spaced recordings from when the rope was new 
until it broke. 

Fore rope 3, csv files were created from every 10th frame from 
35 evenly spaced recordings from the rope was new until the 
test was stopped. 

2.4. Software 

There are many different algorithms available for PCA. Most 
of them require that the data does not have any missing 
values. The bilinear On-The-Fly Processing (OTFP) 
modelling (Vitale et al., 2017) used here is a special method 
for dynamically developing a PCA model in cases where the 
data represents an “ever-lasting” stream of multi-dimensional 
input data that becomes too big to fit in the computer 
memory. The method was made available through Idletechs’ 
OTFP software and accessed via Matlab scripts executed 
using Matlab R2018b. 

3. MODELLING 

Different approaches were tested out, of which the following 
each gave useful insight: 

 Limit in space: Static rope-only images 

 Limit in content: Background removed 

Since data from tests of three ropes was available, these could 
be modelled in different ways: 

 One model can be used for all ropes 

 Each rope can have its own model 

Before modelling, the ambient temperature was subtracted, 
since the room was cold during start-up for rope 1. The upper 
left pixel in each original image was used to estimate the 
ambient temperature.  

First, models for rope 1 were built, and then this model was 
either applied to the remaining two ropes, or separate models 
were made for these. 

3.1. Limit in space  

The simplest way to reduce the amount of data to handle, is 
to select a static window which is always inside the rope, a 
Eulerian approach.  An example is shown in  Figure 1. A 
benefit of this approach is that vertical movement as well as 
loops and loose ends influence the pictures less than if the 
whole image was used. Since the rope’s vertical movement is 
significant, the window is rather small. 

 

 
Figure 1. Example of limit in space 

3.2. Limit in content 

A simple form of dynamic background subtraction was 
applied to all images. In practice this meant that all pixels 
which had changed less than a threshold value on average 
during the previous 20 frames were given scaling 0, while all 
other pixels were given scaling 1.  

4. RESULTS 

4.1. Limit in space 

4.1.1. Rope 1 

Using this window for running PCA on all close to 7 000 
images files from rope 1 gave a first component which is 
clearly related to the average temperature variations within 
each cycle as shown in Figure 2 and Figure 3 and explained 
below.  

In Figure 3, the scale goes from black for low values to white 
for high values. Even though some areas are colder than 
others, all pixels in the image shown in Figure 3 have positive 
values, meaning that any positive score indicates that all parts 
of the image has higher temperature than the center image 
shown in Figure 4, and any negative score indicates that all 
parts of the image has lower temperature than the center 
image. The net consequence is therefore a cyclic variation of 
the rope’s average temperature.  

 

 
Figure 2. Scores for the first component in model from 

static rope-only window for rope 1 
 

 
Figure 3. Loading for the first component from static rope-

only images for rope 1 
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Figure 4. Center image from static rope-only images for  

rope 1 
 
Zooming in, it is seen that the pattern changes from new rope, 
to spent rope, to close to broken rope, as seen in Figure 5. 

 

 

 
Figure 5. Score for the first component for new rope (top), 

spent rope (middle) and close to broken rope (bottom) 
 
As seen from Figure 2 and Figure 5, the peak to shoulder ratio 
changes during the rope’s lifetime. This is plotted in the upper 
part of Figure 6, where the high initial values are due to the 
low rope temperature relative to the ambient seen initially. 
Noteworthy is the clear decrease of this ratio observed when 
the rope nears the end of its lifetime. Similarly, the area 
between the shoulders of the score is plotted in the lower part 
of Figure 6. Towards the very end, the structure of the signal 
breaks down, but a clear area decrease is also observed 
earlier, related to the peak to shoulder ratio decrease. 

  
Figure 6. Peak to shoulder ratio and area between 

“shoulders” for score 1 
 
The other components are only evaluated for the last few 
hundred images. Applying the final model to the whole set of 
images for rope 1 gives scores for all components. Most 
components show no very clear time development, or only 
some large values towards the very end of the rope’s lifetime. 
Components 4 and 8 do show a clear time development, as 

seen in Figure 7 and Figure 8. The later components indicate 
temperature differences within each picture which are not 
clearly related to the rope’s braiding structure, in clear 
contrast to the very structured loading for the first 
component, as shown in Figure 3. 

The low importance of the components after the first one is 
also seen in the explained variance, which increased from 
97.01 % for one component to 97.08 % for ten components. 

 

  

 
Figure 7. Scores and loading for component 4 from static 

rope-only window 
 

 

 
Figure 8. Scores and loading for component 8 from static 

rope-only window 

4.1.2. Rope 2 

Applying the model to the stored images from rope 2 gave 
score 1 as shown in Figure 9. One can see similar changes 
from initial flat tops of each cycle to “valleys” when rope gets 
older to a more chaotic shape towards the end of the rope’s 
life time. 

 
Figure 9. Score 1 for nine evenly distributed recordings for 

rope 2 
 
Comparing the peak to shoulder ratio and the area between 
the shoulders for rope 2 gave similar trends as for rope 1, even 
though the absolute values were somewhat different. The 
increased absolute values of the scores of components 4 and 
8 are not prominent for rope 2, but all scores show clear cyclic 
behavior also for rope 2.  
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4.1.3. Rope 3 

Applying the model made from rope 1 on rope 3 gave values 
for score 1 as shown in Figure 10. 

 

 
Figure 10. Score 1 from static rope-only images of rope 3, 

using the model from rope 1 
 
Zooming in, it is seen that the scores change as shown in 
Figure 11. Though the shape is different from the shapes 
observed for ropes 1 and 2, similar changes over time are 
observed, with increased shoulder height initially, and later 
on lower reduced temperatures and breaking-up of the 
structure. The first recording (images 1 – 200 in the upper 
part of the figure) was done before the test was started, and 
the second recording (images 200 – 400 in the upper part of 
the figure) was recorded during start-up, before the rope had 
reached steady-state temperature. 

 

 

 
Figure 11. Score for the first component for new rope (top), 
spent rope (middle) and close to broken rope (bottom), rope 

3 using the model from rope 1 

4.2. Limit in content 

4.2.1. Rope 1 

The first component, as shown in Figure 12, mostly concerns 
the main temperature of the rope, visualized by the two raw-
image examples in Figure 13. This is also seen by comparing 
with the scores from using the rope-only window in Figure 2. 

Note the less-than-perfect symmetry of the scores from the 
current method. 

 
 

 

 
Figure 12. Scores and loading for component 1 from 

background-subtracted images 
 

|  

 
 

Figure 13. Raw images with low score (upper part) and high 
score (lower part) for component 1 from background-

subtracted images 
 
The second component is related to a part of the CBOS 
machine appearing in front of the camera towards the end of 
the experiment, as seen in Figure 14. This is due to the 
machine stretching to keep constant tension in the rope while 
it elongates. As demonstrated by Falconer et al.(Falconer, 
Grasmo, & Nordgård-Hansen, 2019), the rope elongation is 
significant, as well as being strongly localized.  
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Figure 14. Scores and loading for component 2 from 

background-subtracted images for rope 1 
 
The third component is related to vertical movement of the 
rope, as seen from Figure 15 and Figure 16.  

 

 

 
Figure 15. Scores and loading for component 3 from 

background-subtracted images for rope 1 
 

  

 
Figure 16. Raw images with low score (upper part) and high 

score (lower part) for component 3 from background-
subtracted images for rope 1 

 

Components 4 to 7 all relate to rope surface changes towards 
the end of the rope’s life time. Component 4 is shown as an 
example in Figure 15. 

 

 
Figure 17. Scores and loading for component 4 from 

background-subtracted images for rope 1 
 
The first, temperature-related, component explained 76 % of 
the variation in the images, the second component another 12 
%, while including the vertical movement of the third 
component increased the total explained variance to 89 %. 
After 10 components, 91 % of the total image variation was 
explained. 

4.2.2. Rope 2 

Applying the same method to make a specific model for rope 
2 again gave temperature as the first component.  

No part of the machine appeared in front of the camera in 
these tests. The second component was related to vertical 
movement, as seen in Figure 18. 

 

 

 
Figure 18. Scores and loading for component 2 from 

background-subtracted images for rope 2 
 
The third and fourth components are related to surface 
changes as seen in Figure 19 for component 3. 
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Figure 19. Scores and loading for component 3 from 

background-subtracted images for rope 2 
 
The fifth component is related to vertical temperature 
distribution within the rope, as shown in Figure 20. 

 

 

 
Figure 20. Scores and loading for component 5 from 

background-subtracted images for rope 2 
 

Even though the corresponding explained variance is small, 
the scores for the fifth component showed a clear cyclic 
behavior, as illustrated in Figure 21.  

 

 
Figure 21. Scores for components 1, 2, and 5 of the model 

made from background-subtracted images from rope 2 
 
When watching the corresponding videos, it is clear that for 
the single-bend zone, there is a cold zone below the middle 
of the rope, as seen in the upper part of Figure 22. When 

entering the double-bend zone, the temperature is more 
evenly distributed, though with low temperature at the very 
bottom, as shown in the middle part of the figure. Then, soon 
after the turn, the low temperature at the very bottom grows 
into a cold zone below the middle, as seen in the lower part 
of the figure. 

 

 

 

 
Figure 22. Vertical temperature variations – raw image 

examples near image 350 
 
The first, temperature-related, component explained 76 % of 
the variance, the second component, related to vertical 
movement, explained another 13 %, while about 2 % was 
explained by the surface-related components 3 and 4 
together. The fifth component explained less than 0.5 % of 
the total image variations. Including all ten components 
explained in total 92 % of the observed variance. 

A model for rope 2 was also made without eliminating the 
background, though using the same vertical cropping. The 
results were similar, showing the same general trends in the 
scores, but there were less details in the loadings for the rope, 
and also some background present in the loadings. 

4.2.3. Rope 3 

For rope 3, the part from the CBOS machine was always in 
front of the camera, moving a bit towards the right from 
recording to recording. Still, the first component when 
making a fresh model for this rope was temperature-related, 
with scores very similar to for the space-limited model. The 
second component was related to the position of the CBOS 
machine part, and the third component to vertical rope 
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movement. Components 4 and 5 contained more information 
on the machine part, while component 6 mostly contained 
twist, a cyclic property whose magnitude does not change 
much during the test. An example is given in Figure 23.  

 
 

 

 

  

 
Figure 23. Component 6, low score new rope, high score 
new rope, low score spent rope, and high score spent rope 

 
Apart from the machine part components, none of the scores 
for components 1-6 show a sharp increase in magnitude 
towards the end of test.  

Neither of the first ten components are clearly related to 
surface changes, a fact that is also seen from watching the 
corresponding videos, where rope 3 exhibits far less surface 
degradation than the other two. 

In total, all ten identified components explained just over 83 
% of the observed image variation, of which the temperature-
related first component explained 76 %. Another 5 % was 
explained by the tool in the second component, and close to 
0.5 % was related to the vertical rope movement. 

4.2.4. Summary 

The allocation of the different components to physical 
phenomena is summarized in  

Table 2, where each phenomenon is given a specific shading 
color.  

Table 2. Component interpretations 

Comp. 
Rope 

1 2 3 
1 Average 

temperature 
Average 
temperature 

Average 
temperature 

2 CBOS part Vertical 
movement 

CBOS part 

3 Vertical 
movement 

Surface Vertical 
movement 

4 Surface Surface CBOS part 
5 Surface Twist CBOS part 
6 Surface Surface Twist 

 

5. DISCUSSION 

5.1. Accuracy 

As demonstrated by the rope images shown earlier, the image 
size and temperature resolution are high enough to show rope 
temperature details. The images being clear and not blurred 
due to rope movement, further indicates that the image 
retrieval rate of 100 Hz was sufficient. The average rope 
temperature varies from around 20 °C to close to 60 °C, 
meaning that the accuracy of ± 1 °C is not a problem here. 
Even the more subtle differences, e.g. related to surface 
degradation towards the end of rope 2’s lifetime, is in the 
order of 10 °C.  

The aim of the present study is to gain new qualitative 
understanding and to investigate the method for rope aging 
monitoring. On the other hand, detailed quantitative 
modelling of rope temperature changes is not the topic here. 
Therefore, relative temperature changes are of more interest 
than absolute changes. The properties of the thermal camera 
can therefore not be seen to impair the results discussed 
below.  

5.2. Improved understanding of cyclic bend over sheave 

The different models result in the same important factors 
describing what happened during the tests, as listed below: 

 Average temperature 

 Vertical temperature variations 

 Surface changes 

 Machine part in front of the camera 

 Vertical rope movement 

 Rope twist 
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5.2.1. Average temperature 

First, the average temperature is discussed, based on the 
findings from the space-limited model. A linear relation was 
found between the scores for component 1 and the average 
temperature deviation from ambient of these images. 
Therefore, one may conclude that 97 % of the observed 
variations observed in this part of the images is explained by 
the average temperature alone. 

The temperature cycles are explained in Figure 24 and Figure 
25. In Figure 24, the sheave is seen on the right, and the green 
arrow represents the IR camera. An x inside the sheave means 
that it is not moving, while arrows inside the sheave indicate 
rotation. The blue dots in Figure 24 represent the hot turning 
point, when the camera sees rope from the double-bend zone, 
which always has a bit of time to cool down (or to receive 
heat from the neighboring rope parts) between turns. This is 
marked with blue circles in Figure 25. The green dots and 
circles represent rope also from the double-bend zone, but 
which had no time to cool down after the previous turn. There 
are also the slightly different points, marked with light green 
circles in Figure 25. This the exact same rope position, but 
this time, the rope has had time to exchange heat with the 
ambient and with the rest of the rope before passing the 
camera. The orange dots in Figure 24 never pass the camera. 
The yellow circles in Figure 25 correspond to rope that has 
never been in contact with the sheave. 

 
Figure 24. Temperature cycle explained 

 

 
Figure 25. Temperature cycle explained as scores 

 
The extreme symmetry observed between the peaks marked 
by dark and lighter green circles indicates that the heat 
exchange between the rope and the ambient by natural 
convection or by radiation is very limited for the rope portion 
observed by the static rope-only window. Otherwise, a 

cooling would be observed between the dark green and the 
light green circles. Alternatively, steady state may be 
reached, where the internal of the rope is cooled as heat 
escapes via the surface without the surface temperature 
changing. 

The clear shape of each cycle in Figure 25 indicates that there 
is very little longitudinal heat conduction taking place within 
the rope. Otherwise, the heat from the double-bend zone 
would have «smeared» the very clear shoulders made by the 
singe-bend zone. 

Different explanations for the observed temperature profile 
changes in time are discussed below.  

Higher and sharper “horns” and shoulders may in principle 
have different reasons: 

 Heat accumulation. This is refuted by the later collapse 
of the peaks. 

 Increased heat transport to the surface. This could be 
caused by fusing of the strands, which reduces the heat 
transfer coefficients between the different strands. 

 More heat generated at bending. This could be caused by 
stiffer strands as they age. 

 Reduced heat capacity. As air moves out of the rope 
during this phase, the heat capacity actually increases, 
since the fibers’ heat capacity is higher than that of air. 

 Reduced density. This seems less probable, since the 
rope actually gets more compact during this stage. 

Collapse of top towards the end may in principle also have 
various reasons: 

 Reduced heat transport to the surface, which may be a 
result of many broken fibers, allowing more air into the 
rope, and introducing heat transfer coefficients between 
the strand ends. 

 An increase in emissivity would mean that the registered 
temperatures are lower than the actual temperatures.  In 
reality, the emissivity is expected to decrease as the 
surface gets rougher. 

 Less heat generated at bending. This could be caused by 
more cut fibers or strands. 

 Increased heat capacity. During this phase, strands are 
broken, allowing air into the rope. Since air has lower 
heat capacity than the fibers, the heat capacity will 
actually decrease. 

 Increased density is less probable, since increased 
volume is observed during this stage. 

To summarize, the observed changes are most likely caused 
by both changes in the heat transport to the rope surface and 
in the amount of heat generated upon bending. 

Rope 3 shows a more complicated temperature profile for 
each cycle, as shown in Figure 26. Comparing to rope 1, it is 
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seen that the difference is mostly in the top structure, but 
looking at the actual temperatures, it is found that the 
maximum temperature is not very different. The more 
complicated profile can be explained by even less 
longitudinal heat transfer than for ropes 1 and 2. Rope 3 is 
said from the manufacturer to be optimized for good bending 
properties. One way to achieve this, is to coat each yarn or 
strand in order to reduce the inner friction. This would have 
the side effect of increasing the heat transfer coefficient 
between these rope parts, reducing the overall thermal 
conductivity. 

Furthermore, the cycles for rope 3 are slightly longer, and a 
larger fraction of the rope passing the camera had been heated 
from bending. This is explained by rope 3 having a longer 
splice than the other ropes, forcing the test operator to shift 
the rope movement towards the driving sheave.  

 
Figure 26. Score 1 for rope 1 and rope 3 

5.2.2. Vertical temperature variations 

The model made from background-eliminated versions of the 
entire images from rope 2 resulted in the fifth component 
being clearly related to variations in the vertical temperature 
profile. From this, it is observed that even though the average 
temperature of the double-bend zone does not change much 
when the sheave turns, the temperature distribution does. 
Watching the corresponding videos, it was observed that the 
root cause of this change is actually a twist of the rope, where 
the cold, lower part of the rope twists between the very 
bottom and just below the middle of the rope.  

The lower part of the rope being colder in the first place may 
have several explanations: 

 The bending mainly heats the rope near the top. This may 
be reasonable since there is more movement of the 
strands here than near the bottom, where the strands are 
compressed. 

 The heat may be more readily conducted towards the top. 
Asymmetry in the rope’s thermal properties may well be 
a result of asymmetry in heating of the rope. 

 The rope may be cooled at the bottom from the sheave. 
Using a simple hand-held IR camera, it was observed 

that at least the sides of the sheave grooves were several 
degrees colder than the rope. It was not possible to 
measure the temperature at the groove bottom while an 
experiment was running.  

5.2.3. Surface changes 

When observing the rope tests with an untrained eye, the first 
feature that one sees, is the fraying of the rope’s surface, and 
the occurrence of extruded loops after some time. This goes 
on for several days before the rope finally breaks. However, 
rope 2 did not look as bad as rope 1 when it broke, and it is 
hard to see which irregularities are only superficial and which 
are not.  

These surface changes are clearly visible in the IR images. 
However, for the space-limited model, which only 
considered the central part of the surface, only 3 % of the 
variation observed between all the ≈ 7 000 images from rope 
1 were attributed to the combination of surface changes and 
other movement of the rope. On the other hand, surface 
changes resulted in significant components when the rope 
edges were also taken into account. The models made from 
the entire pictures for ropes 1 and 2 both gave scores related 
to surface changes which clearly increased as the rope got 
older. For rope 3, this was not the case, possibly because the 
rope was not tested until it broke, but it was also noted that 
the surface changes that did occur, were far less random than 
for ropes 1 and 2. 

5.2.4. Machine part in front of the camera 

This happened during the final recording of rope 1, while the 
part was present during the entire test of rope 3. For the rope-
only window, the window was chosen such that the machine 
part was never in it.  

For the model made from the entire images, with background 
subtracted, separate components were devoted to this feature. 
For rope 1, the part was only visible during the last recording, 
meaning it had only one position. Even so, component 2, 
which has this as its most prominent feature, explained 12 % 
of the variation in the ≈ 7 000 images. For rope 3, three 
components were mostly devoted to this machine part. Thus, 
chemometrics separates this feature from other phenomena, 
but it may still lead to other, more rope-related features 
getting less weight and attention than they would otherwise. 

First, one should seek to avoid the problem in the physical 
machine-camera setup. If not possible, another improvement 
may be to crop the images so that the machine part is never 
visible, or to modify the background elimination to also 
eliminate this part. 

5.2.5. Vertical rope movement 

Vertical rope movement is observed in the models made from 
the entire images with background eliminated. Figure 27 
shows the scores of components 1 and 3 plotted together for 
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the model made for rope 1. Note that the vertical movement 
follows the machine’s cycles very systematically.  

 
Figure 27. Scores from components 1 and 3 plotted together 
 
The sharp increase observed near the hot turning-point, i.e. 
when rope from the double-bend zone is next to the camera 
and the sheaves do not move, might indicate that the rope 
tension is always updated at this point of the cycle. However, 
looking at the cylinder position as a function of time in Figure 
28, it is seen that the tension is not increased that regularly.  

 

 
Figure 28. Cylinder position as a function of time 

5.2.6. Rope twist 

In the model made from images without background for rope 
3, rope twist was an important part of the sixth component. 
The score for this component varied cyclically, indicating 
that the twist was a feature of how the rope was mounted, and 
not a feature of the rope aging.  

For ropes 1 and 2, either there was less twist present in the 
rope, or the twist was overshadowed by the more severe 
surface degradation observed there. 

5.3. Rope differences 

Even though the first component describes average 
temperature variations in all cases, different physical 
phenomena are related to different components for the 
different ropes. This is summarized in Table 2 for analysis 
limited in content. 

Since the CBOS part is never in front of the camera for rope 
2, it is natural that this phenomenon is not related to any 
changes observed in the images for this rope. The CBOS part 
is in all images for rope 3, but only in the images from the 
final recording for rope 1. Therefore, it is also natural that 

more than one component is required to describe the image 
changes related to the CBOS part for rope 3.  

For rope 3, the twist was present during the whole process, as 
shown in Figure 23. Analyzing the vertical temperature 
differences of component 5 for rope 2, it was seen that this 
was also related to rope twist, present during the whole 
process.  

As discussed earlier, rope 3 was not run until it broke at the 
testing sheave, so it did not exhibit severe surface damage. 
This is the reason for no surface damage related components 
in the analysis of the images from rope 3. 

It can therefore be concluded that the present tests indicate 
that the physical phenomena observed can be ordered 
according to how important they are for the IR images as 
follows: 

1. Average temperature 

2. CBOS part in front of camera, if present 

3. Vertical rope movement 

4. Surface degradation, if present 

5. Rope twist, if present 

Doing experiments on different ropes over time is likely to 
result in different phenomena influencing the images to 
various degrees, such as machine parts in front of the camera, 
various degrees of twisting, etc. An important benefit of the 
present method is that it separates the phenomena, so they can 
either be analyzed separately, or some phenomena may be 
disregarded. 

5.4. Modelling approaches 

In addition to the methods described in detail in the present 
paper, other approaches were also tried out. These are listed 
below:  

 Limiting in time, i.e. looking at changes over time for 
one specific part of the rope – a Lagrangian approach. 

 Selecting similar images using PCA to define important 
features that describe similar images, and then making a 
model using these images only. 

 Using warp and shift to generate modified images where 
the rope seems to always be in the same place, and then 
making a model from these. 

 Stacking all images from one cycle per recording to 
make large hyper-images, and then making a model from 
these. 

Using the first of these approaches on rope from the double-
bend zone, it was observed that different tests on the same 
type of rope may give highly different quantitative measures 
of surface changes in the double-bend zone. A reason may be 
that details in e.g. rope mounting and wear of the sheave 
influences how the surface develops, making one unified 
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model infeasible. When making one model for each rope, 
both models resulted in score values that increased sharply 
when the rope was nearing the end of its lifetime. Using the 
same method, the second component for rope 1 was related 
to localized rope twist. This was not found for this rope for 
the model considering larger portions of the rope. On the 
other hand, this method did not detect vertical movement, 
since it only considered a very small part of each cycle. 

The second approach inspired the first approach, since PCA 
on some manually selected very similar images gave 
temperature as the most important component. Images with 
similar temperatures are from the same part of the cycle, and 
thus from the same physical part of the rope. Up-weighing 
less significant components led to considering vertical 
movement or surface degradation, again strongly linked to 
cycle position. For less regular, and more realistic, tests, these 
two methods will naturally be more diverse, and PCA may be 
more useful than simply picking images from the same part 
of the cycle. 

The third approach required frequent reference images, and 
even then, the image processing was only partially 
successful. Therefore, the results showing how to build up 
these warped imaged were hard to interpret. 

Finally, the fourth method revealed the vertical rope 
movement very clearly and showed temperature changes 
within the single- and double-bend zones as well as vertical 
temperature differences. However, there was some 
confounding between different phenomena, where one 
component could e.g. be related to both vertical movement 
and to fraying. 

To conclude, the best approach depends on the goal of the 
investigation, since different approaches can detect different 
features of the test or the rope. 

5.5. Fiber rope monitoring 

The ropes all show clear, cyclic temperatures profiles, which 
change in a characteristic way as the rope ages. These are 
readily available from IR images by simply finding the 
average temperature in a window which is placed to be 
always within the rope. Physically, the time development is 
explained as changes in the rope’s thermal conductivity and 
in the heat generated by bending. 

For use in real-life monitoring of fiber ropes, one must 
consider how these profiles will look when different sections 
of the rope are subject to bending at varying time intervals. 
The underlying physical changes will be the same, so clear 
changes are expected. However, the temperature profiles will 
not be as clear as from the very regular testing performed 
here. 

Chemometrics shows promise in separating various 
phenomena, such as temperature change, vertical rope 
movement, surface degradation, etc. This is in line with the 

findings in (Vitale et al., 2017), where chemometrics was also 
used to improve the understanding of the experiments by 
discovering and extracting systematic covariance 
information from data streams. 

When using IR images to monitor surface degradation, it is 
seen that separate models must be made for each specific rope 
being tested. Doing so, scores for the surface-related 
components exhibit clear increases as the rope ages. A 
problem is that since each model is made for a specific rope, 
it is hard to quantify the remaining useful life based on 
current score values. Rather, one most look at how the score 
values change over time or look for emerging components 
with loadings indicating very large changes. 

When the method is generalized as described above, scores 
from relevant components may be combined to give one 
indicator of rope age. 

Finally, the modelling compresses the data, by removing 
redundancy and decomposing the statistically significant 
variation into principal components. This reduces the number 
of components to keep track of, making it feasible to do 
online monitoring of the knowledge gained. For each 
component, one image and a vector the length of the desired 
time window is necessary. Additionally, a center and scaling 
image is needed. As a simplification, neglecting the need for 
model updates, the storage requirement using an established 
model, relative to the original data, is number of components 
/ number of variables. In the case of a 640 x 512 pixel image 
with 10 components, this is as given in Eq. (2). 

 
10

640 ⋅ 512
=

10

327 680
=

1

32 768
= 3.1 ⋅ 10 . 

 
(2) 

6. FURTHER WORK 

In order to learn more about what causes the observed 
changes, thermocouple measurements within the rope during 
CBOS testing would be useful. 

To move towards real-life offshore testing, changes in the 
rope’s average temperature with more irregular bending, both 
in position and in time, should be considered and tested. 

Also, for real-life testing, remaining useful life must be 
quantified from the observed changes. 

7. CONCLUSION 

A fiber rope’s thermal properties do change during its 
lifetime, and these changes are detectable using an IR camera.  

Chemometrics shows promise in separating changes in 
average temperature from surface changes, rope movement, 
etc. Therefore, when analyzing IR images from rope testing 
in order to improve the process understanding, chemometrics 
is a useful tool.  
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If IR images are used to monitor fiber rope surface 
deterioration for maintenance purposes, chemometrics can be 
useful for setting up suitable models. 
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