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3 Luleå Technical University, Luleå, Sweden
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ABSTRACT

Prognostics and Health Management (PHM) systems have
been shown to provide many benefits to the reliability, perfor-
mance, and life of engineered systems. However, because of
trade-offs between up-front design and implementation costs,
operational performance, and reliability, it may not be obvi-
ous in the early design phase whether one PHM system will
be more beneficial to another, or whether a PHM system will
provide benefit compared to a traditional reliability approach.
These trade-offs make the commitment required to pursue
PHM features in the early design phase difficult to justify.
In this paper, a cost model incorporating trade-offs among
design cost, operational performance, and failure risk is used
to provide a comprehensive value comparison of health man-
agement options to motivate design decision-making. This
approach is then demonstrated in a simple case study com-
paring the use of a PHM system for condition-based main-
tenance or diagnostic-based recovery with implementing re-
dundancy and increased inspection in the design. Then the ef-
fect of different model inputs and assumptions is varied and
the resulting design choices are shown, illustrating the use-
fulness of cost modelling to capture design trade-offs. Using
this approach, decisions about pursuing PHM can be made
early, enabling the benefits to be fully leveraged in the design
process to achieve increased operational resilience.

1. INTRODUCTION

Prognostics and health management systems (PHM) have
shown great promise towards making engineered systems
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more safe and economical. Unfortunately, however, while
such systems have been implemented on a variety of tech-
nologically complex systems, such as the Joint Strike Fighter
(Hess & Fila, 2002), Railroads (Brahimi, Medjaher, Leouatni,
& Zerhouni, 2017), Smart Manufacturing (Jin, Weiss, Siegel,
& Lee, 2016) and Nuclear Power Plants (Coble, Ramuhalli,
Bond, Hines, & Ipadhyaya, 2015), they have yet to achieve
widespread adoption. While much of this lack of adoption
could be attributed to lack of knowledge and technical inap-
propriateness (e.g. for cheap reliable products), the primary
concern from the perspective of project management is the
lack of being able to directly quantify and compare the over-
all utility of PHM compared to more “traditional” approaches
to risk and maintenance. Up-front costs to design and imple-
ment PHM systems, which comes from the labourious effort
of characterizing the system with models and/or data and de-
veloping the necessary hardware and software, and as a result
it may be difficult to have certainty in the early design phase
that such an approach will be appropriate. As a result most
PHM solutions today are “retrofit” solutions being integrated
after a system has been deployed, when operators realize that
insufficient insight into operations is a salient problem that a
condition-based maintenance strategy could solve.

Nevertheless, when designing a new system, the choice to
use a PHM system should be made in the early design phase,
when the design team has the most ability to integrate it with
the rest of the design (e.g. taking advantage of performance
gains associated with prognostics over redundancy) and to al-
low resources to be allocated to prognostics teams early so
that their work may be done concurrently with (rather than
after) the traditional design process. As a result, the ini-
tial decision to pursue the PHM system should occur in the
initial concept selection and requirements development pro-
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cess along with the rest of the system. To make this deci-
sion appropriately, the up-front design costs must be weighed
against the operational, maintenance, and safety benefits they
will provide in the final design (Feldman & Sandborn, 2008)
(Kurien & R-Moreno, 2008).

Justification of prognostic systems using cost-benefit analy-
sis has been presented in previous work, as outlined in Sec-
tion 2.2. While previous work has shown how to quantify
the economic case for prognostics systems, it has not shown
how to use this economic case to drive system development
in the early design phase, when one has high-level design re-
quirements that must be considered and a number of design
options to consider. This paper provides this approach, which
works by associating the requirements related to the PHM
system with an underlying value model that can be used to
choose between design options and set targets for the design.
This process is demonstrated on a simple value model under
a variety of design scenarios, showing how the design choices
given by this process will change based on the PHM system’s
internal requirements and external technical and market envi-
ronment. This paper is organized as follows: Section 2 pro-
vides background into the early design decision-making pro-
cess and cost-benefit analysis in PHM. Section 3 provides the
general approach to generating and choosing between design
options. Section 4 then demonstrates the approach and shows
how design choices change based on parameter values and as-
sumptions. Finally, Section 5 provides some conclusions and
directions for future work for this approach.

2. BACKGROUND

Before presenting the details of the method, some context
is provided here about early design decision-making and
previously-developed cost models in PHM.

2.1. Requirements Specification

A key part of the design process is defining a quantitative
model of preference from customer requirements that can be
used to benchmark products and choose between design con-
cepts. The most well-known of these processes is the Qual-
ity Functional Deployment, which correlates design specifi-
cations to customer requirements, which are then weighted
by importance and then used to develop a target benchmark
for ongoing design work (Ullman, 2010, Chapter 6). The
main tool used to perform this process is the House of Qual-
ity, which is a visual representation of the correlation be-
tween customer requirements and engineering specifications,
the correlation between different engineering specifications,
preferences for requirements from different customers, cur-
rent products’ ability to meet requirements, and the resulting
target benchmark (Ullman, 2010, Chapter 6). Similarly, in the
concept selection process (after infeasible or obviously poor
solutions are removed), Pugh Matrices (Ullman, 2010, Chap-

ter 8), Value analysis (Pahl & Beitz, 2007, Chapter 3), and
Utility-based selection (Otto et al., 2003, Chapter 11) are of-
ten used to compare between design alternatives, which work
by quantifying the importance of each criteria in a table or
tree structure, rating each concept along each criteria, and
then combining the scores as a weighted sum.

Recently, the validity of these design procedures has been
challenged. As is identified in (Olewnik & Lewis, 2008), the
fact that the true relationship between technical attributes and
customer attributes (and preferences) is not identified in the
House of Quality make it prone to giving poor recommenda-
tions. Additionally, the House of Quality, Pugh Matrices, and
other traditionally-used engineering decision-making meth-
ods are internally inconsistent (Hazelrigg, 2010) and often
subject to assumptions regarding independence and linearity
of criteria which may not be generally applicable to all de-
sign cases (P. Collopy, 2009). Value-driven design has been
presented as a solution to these issues, where a model of the
actual realized costs and revenues generated by the system
is developed and parameterized in terms of system attributes
(P. D. Collopy & Hollingsworth, 2011). In this method, re-
quirements are removed from the design to allow for opti-
mization, remove cost growth and performance erosion due
to an inability to meet requirements, and resolve trade-offs
between objectives (P. D. Collopy & Hollingsworth, 2011),
however methods also exist that augment the traditional qual-
ity functional deployment process with explicit value models,
retaining the benefits of having a clear set of requirements and
benchmark design (C. J. Hoyle & Chen, 2009). In this paper,
the value-driven design process is adapted to the early design
PHM systems–not necessarily removing specifications per se
(since it is often useful to solidify the design to allow work to
proceed in an integrated way), but by using system value to
justify their development.

2.2. Cost Modelling in PHM

Cost modelling for PHM systems is an active area of research,
and a literature review is provided in (Saxena et al., 2010).
As identified by (Feldman & Sandborn, 2008) and (Kurien &
R-Moreno, 2008), because of PHM systems’ large up-front
cost and technological unfamiliarity, it becomes important to
quantify the trade-offs of PHM to determine whether there
will be a good return-on-investment. A variety of approaches
have been presented to quantify and use these metrics for
design and decision-making. A multi-objective trade-space
tool was previously used to investigate where PHM systems
had the most benefit, showing that the greatest return-on-
investment is achieved when the system has a long opera-
tional time horizon, large numbers manufactured and in use,
and a high failure rate (Banks & Merenich, 2007). A compar-
ison of PHM systems and traditional reliability approaches is
provided in (Scanff et al., 2007) for aircraft avionics, find-
ing the preferability of PHM systems to be dependent on the

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

underlying failure distribution, with a normal-approximating
Weibull distribution centered around the expected mean-time-
to-failure and high “random” failure rates resulting in less
value from the PHM system, and an exponential model of
expected mean-time-to-failure resulting in more value from
the PHM system.

A study of the effect of PHM coverage rate (the percent
of faults a PHM system would be able to prevent) and
false alarm rate (accidental unneeded maintenance and re-
placement due to the PHM system) is provided in (Hölzel,
Schilling, Neuheuser, Gollnick, & Lufthansa Technik, 2012),
finding a large dependency between these attributes and the
net present value of the resulting strategy (not including the
up-front design cost). The value of flexibility has further been
quantified in previous work in the context of windfarm main-
tenance to make decisions about maintenance in response to
the variable internal (e.g. health) and external conditions of
the windfarm over time using decision trees and Monte Carlo
simulation (Haddad, Sandborn, & Pecht, 2012). This ap-
proach found that the time given by the prognostic indica-
tion before failure itself has value in enabling the operators to
choose to perform maintenance at an optimal time given ex-
ternal conditions (Lei, Sandborn, Bakhshi, & Kashani-Pour,
2015).

Most benefits quantified in the research are related to longer
usage time, greater availability, less required maintenance,
flexibility in maintenance schedule, and longer operational
life, and most existing literature covering cost-benefit anal-
ysis of PHM systems is about quantifying the benefit of a
condition-based maintenance approach with traditional main-
tenance approaches. A repeated area of interest in the liter-
ature is evaluating the cost-benefit of PHM systems against
“traditional” designed features, and use in early design, how-
ever few studies have yet been performed in this area. A study
of using prognostics to replace redundancies in an aircraft is
provided in (Bodden, Hadden, Grube, & Clements, 2006),
finding that the use of prognostics could reduce weight with-
out violating reliability and availability constraints. However,
the trade-offs in this study were not quantified using an eco-
nomic model for decision-making. A framework for design
optimization has been presented by (Yu, Honda, Zubair, Shar-
qawy, & Yang, 2013) for use in design, however it did not
consider comparing differing sets of functions, instead focus-
ing on optimization of parameters. A cost-based framework
is proposed in (C. Hoyle, Tumer, Mehr, & Chen, 2009) to de-
termine the allocation of system health features in a system.
In previous work, we developed a design framework for com-
paring resilient features in the early design stage to consider
the cost-benefit of different design features in the early de-
sign phase (Hulse, Hoyle, Goebel, & Tumer, 2018) (Hulse,
Hoyle, Goebel, & Tumer, 2019). In this work we will build
on this work to specifically compare the costs and benefits of
different designed features and PHM approaches.

Figure 1. The Early Design Concept Generation and Selec-
tion Process

3. APPROACH

Whether and how to implement a PHM system in a new sys-
tem will occur in the early design process, when the design
team has the most ability to consider a variety of different
design concepts. Figure 1 shows a simple representation of
a traditional early design process (Otto et al., 2003) (Pahl &
Beitz, 2007). The designers begin by clarifying the problem
into high-level goals and objectives based on the market and
organizational need for the product and the capabilities that
can be realized by various technologies. This problem defi-
nition drives design decision-making throughout the process,
defining which designs will be feasible and most fit to the
given task. To solve this problem, a variety of different con-
cepts are generated and investigated then refined and selected.
In this selection process, each concept is modelled, bench-
marked along a set of selection criteria, and chosen based on
those criteria. After this choice is made, the design is so-
lidified and design work proceeds to realize that concept the
embodiment design phase (Pahl & Beitz, 2007). In the ap-
proach presented here, the need for the system is clarified
into an explicit cost model in terms of the selection criteria
concurrently with design work, and then used in the concept
selection process to select the best concepts. The details of
this modelling and design approach will be discussed in the
next subsections.

3.1. Developing a Value Model from System Attributes

Using value to drive PHM design decisions requires devel-
oping a model of the profit generated by the system based
on early design requirements. Requirements for a system
will depend on the product situation, as discussed in (Saxena
et al., 2010). For example, if there are ethical considera-
tions that must be considered in the design of the product
(such as safety, privacy, sustainability, or security) identified
in (Goebel, Smith, & Bajwa, 2019), the costs associated with
those attributes also need to be quantified and incorporated in
the overall cost model. However in a generic design scenario
there are three major requirements to consider, as shown in
Figure 2 with an integrated cost model:

Resilience–the mitigation of faults by the system, including
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Figure 2. Constructing a value model aligned with PHM system requirements.

reliability (the reduction of unmitigated fault probability by
the system), recoverability (the decrease in fault effect sever-
ity by the system), and complexity (the introduction of faults
by the system). In this generic model, the value of resilience
a system can be quantified by considering the expected costs
of the system in the total set of faults. To quantify this fault
cost over any set of fault scenarios, the expected cost of faults
is:

CF = T ∗ ra
∑

Ps|a ∗ Cs +
∑

T ∗ ru ∗ Cu (1)

where T is the life-cycle time, ra is the occurrence rate for
fault a, Ps|a is the probability that the system will end up in
an end-state s in a scenario, Cs is the cost of that scenario, ru
is the rate of a given undesired mitigation feature being used,
and Cu is the cost of the undesired mitigation feature being
used.

In the single-fault case, these fault costs CF are the sum of
expected failure scenario costs (2), mitigated fault scenario
cost (3), and false alarm cost for the system (4):

CF = T ∗ rf ∗ Pfs|f ∗ Cfs (2)
+T ∗ rf ∗ Pms|f ∗ Cms (3)

+T ∗ ru ∗ Cu (4)

where T is the lifecycle usage time, rf is the fault rate, Pfs|f
is the probability of the fault scenario fs occurring unmiti-
gated (or, 1 − E, where E is the effectiveness of the miti-
gating feature) with cost Cfs, Pms|f is the probability of the
mitigated scenario ms given the fault occurs (E) which has
cost Cms, ru is the false alarm rate, and Cu is the cost of a
false alarm. Considering a model at this level of detail, then,

controllable PHM benchmarks include effectiveness E, mit-
igated fault severities Cms, and false alarm rate ru, although
other parameters may be controllable through the design of
the rest of the system (lifecycle time, false alarm costs, failure
costs, etc) and may occur at lower levels of a more detailed
resilience-based cost model (e.g. critical prediction horizon,
etc).

Productivity–the operational practicality of the system, in-
cluding maintainability (the cost and frequency of operations
in a “smarter” maintenance strategy) and performance (the
ability to use the system to increase functionality and/or ef-
ficiency). In a value model, the productivity of the system is
modeled as operational cost. In a simple model, the opera-
tional costs CO is the result of costs and revenues from use
(5) as well as the cost of maintenance (6):

CO = T ∗ (co − ro) (5)
+(T/tm) ∗ Cm (6)

where co is the per-hour cost of operations, ro is the per-hour
cost of revenue, tm is the maintenance interval, and Cm is
the cost per maintenance interval. For more detailed bench-
mark specification of PHM systems, the cost of performance
can result in benchmarks on hardware weight, volume, and
other performance-related parameters while the maintenance
can be specified here using the average intervals for each re-
quired operation and the costs of each of those operations.

Implementability–the ease of implementing the PHM sys-
tem, including technical difficulty (the design and research
effort required to achieve system requirements) and manu-
facturability (the procurement, assembly, and testing costs
of integrating the PHM system). The implementability of a
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system can be quantified by considering design costs. In a
simple model the design costs CD are a function of the per-
unit baseline manufacturing cost Cmb, feature manufacturing
costs Cmf and the overall baseline development costs Cdb

and feature development costs Cdf that result from the ex-
pected time, cost, and risk of developing the technology:

CD = (Cdb + Cdf )/n+ (Cmb + Cmf ) (7)

where n is the total number of systems manufactured. The
implementability of the system are related as much to the
project as to the technology, however a more detailed con-
sideration could result in benchmark plan for hardware and
software costs, as well as the product schedule and develop-
ment resource use.

Value–The overall value is a result of the resilience, produc-
tivity, and implementability quantified as failure, operational,
and design costs. While design costs only occur at the begin-
ning of design, operational and failure costs occur throughout
the system’s lifecycle. As a result, to consider the overall
value of a design, the time value of returns should be consid-
ered using the net present value formula:

V = −NPV (CF , i, T )−NPV (CO, i, T )− CD (8)

where i is the yearly discount factor.

3.2. Generating and Assessing Design Variants

Early system design involves covering a large space of dif-
ferent design options in order to find the design that will be
the best. For this to occur, a variety of health management
approaches should be investigated in early design to see what
will be most appropriate to the application, including PHM
systems, traditional reliability approaches, and diagnostic-
enabled failure tolerance and recovery in the system. The
general sequence performed in developing a concept to the
point where it can be compared with others using a traditional
design process (Pahl & Beitz, 2007) includes determining:

1. Functions Performed–Will the system recommend and
schedule maintenance, or also take the system offline
in use? What faults will the system attempt to predict,
avoid, or detect?

2. Solution Principles Used–How will the system form the
prognostic? Will it be a model-based, data-based, or hy-
brid approach? What types of sensors will be used?

3. Integration and Feasibility–Can performance measures
and analyses be trusted? Will an off-the-shelf or external
solution be used or will it be internally developed? Will
the PHM system integrate with the rest of the system as
desired?

A design that answers each of these questions has completed
the conceptual design process and is developed enough to be
compared with others. After going through this process the

system can then be rated on how well it will perform along
various criteria (detection rate, false alarm rate, prediction
horizon, etc), which are then used as inputs to cost model
for decision-making.

4. DEMONSTRATION

To demonstrate how a cost model can be used to drive early
PHM design decisions, a simple example on a generic sys-
tem considering one fault with the model presented in 3.1
to see how PHM-based solutions compare with others. The
baseline values and demonstration of the model is shown in
Table 1. In this situation the system is expected to run consis-
tently at a moderate scale (n = 200 systems) over a long
life (T = 25000 hours over a 17 year life) at high relia-
bility (rf = 5 ∗ 10−6 faults/hr) by an established company
(i = 5%). However, if the system fails there will be a large
cost due to safety effects ($16M dollars). This is typical of
the design situation for aviation.

4.1. Design Options and Results

A variety of different potential functions are considered in
the assessment in Table 1 to the system to increase system
resilience, including:

1. Baseline Design: The baseline design in which no risk-
mitigation strategy is provided.

2. Increased Inspection: The baseline design in which
risk is reduced through frequent inspection. This re-
sults in considerable operational costs due to the heavy
maintenance schedule but is given a low effectiveness
(E = 0.5) since not all faults will be apparent to inspec-
tors in the time immediately before the event occurs.

3. PHM System (CBM): A design with a PHM system im-
plementing a condition-based maintenance strategy. This
approach is given moderate effectiveness (E = 0.95) be-
cause while the underlying model may characterize and
track degradation of the system well, there are still “ran-
dom” errors that will occur unpredictably. This also has a
minor effect on operational costs due to weight and sen-
sor maintenance.

4. Hot Redundancy: A design with a hot redundancy that
is constantly running and managed to activate imme-
diately when a fault occurs in the active component.
This has high effectiveness (assuming total independence
of faults) but results in higher operational costs due to
greater parts replacement and cost of weight. However,
there is less up-front design cost since redundancy cir-
cuits are well-developed technology.

5. PHM System (Recovery): A design with a diagnostic-
based recovery system leveraging flexibility or reconfig-
urability in the system. The implementation of such a
system is contingent on the rest of the system having
functionality that can be reconfigured. In this demon-
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stration it is considered that a high effectiveness can
be achieved using this approach with less maintenance
and performance cost than a redundancy. However, the
chance of partial recovery makes the mitigated fault cost
higher than it would be otherwise, and there is a high
up-front design cost to develop the system.

A comparison of the various systems using some example
numbers is shown in Table 1. As shown, in this design situa-
tion, the total NPV is greatly improved by the implementation
of any fault-mitigating feature due to the high failure cost, and
the health management functions (CBM System, Hot Redun-
dancy, and Recovery System) each have a comparable overall
NPV, with the recovery system having the highest.

4.2. Consideration of Possible Design Scenarios

To show how a value model can incorporate the particular
needs of the market as well as technical challenges of a given
design situation into the decision-making process, the effect
of a variety of design situations on the resulting chosen design
will be shown here. These situations can be grouped into ones
based on the internal technical benchmarked criteria of the
feature, external technical environment of the feature, and the
overall market and organizational environment of the prod-
uct, as listed below. The preferability of these features (and
overall cost score of each option) in the different point-cases
assessed is shown in Figure 3. The individual parameters, ex-
planation, and interpretation of each case is discussed below:

• Situation 1: Nominal Scenario
In the baseline case, high failure costs and moderate per-
formance costs make the combination recovery system
preferable due to the low effect on performance and mod-
erate effectiveness compared to the redundancy scheme.

Feature Criteria

• Situation 2: High False Alarm Rate
(ru = 5 ∗ 10−4)
When the rate of false alarms given by a system is high,
the introduced cost has a significant effect on the prefer-
ability of a recovery system, since the cost of accidental
recovery is higher than the cost of accidental prevention.

• Situation 3: High Effectiveness, Common Mode Er-
rors
( CBM E = 0.99, Red. E = 0.9 )
In the baseline case, the preferability of a redundancy
is a result of higher effectiveness due to assumptions
about independence and prognostic effectiveness. How-
ever, when the fault rate for each redundancy is not in-
dependent and a high effectiveness can be achieved, the
prognostic system becomes preferable.

• Situation 4: Low Mitigatability
( Red., Recovery E = 0.8 )

When a fault is difficult to recover from, the effectiveness
of fault masking and recovery options is low. As a result,
a prognostic approach becomes preferred.

• Situation 5: Low Cost of Recovery
( Recovery Cu, Cms = 1000 )
The assumption for the recovery system in the baseline
case is that there will be some additional cost taken on
by entering the recovery state (e.g. by triggering a safety
system). When this cost is low, the recovery system be-
comes preferred.

Technical Environment

• Situation 6: High Fault Rate
( rf = 1 ∗ 10−4 )
In the high rate situation, expected failure costs be-
come even more dominant, making less effective fea-
tures even less preferable. This reverses in low-rate sit-
uations, where maintenance, performance, and manufac-
turing costs are more likely to be a consideration.

• Situation 7: Low Cost of Failure
( Cfs = 500, 000, Recovery Cu, Cms = 20, 000)
A low cost of failure situation (as with a low rate sit-
uation) leads other concerns to be the dominant factor,
leading PHM to be the most preferable option, though
the difference between each is relatively marginal.

• Situation 8: High Cost of Performance
( Red. co = 450, ro = 475 )
The preferability of a redundancy system is sensitive to
the cost of performance–the amount of cost or decreased
revenue incurred in the operation of the system due to,
for example, increased weight causing more energy use
or increased use of space leading to less capacity.

• Situation 9: High Maintenance
( tm = Baseline tm/10, InsCm = 1000, CBM Cm =
1100, Red Cm = 2000, Rec Cm = 1500)
When the cost of each maintenance operation is high,
reducing the amount of maintenance required has signif-
icant influence on the decision. In this case, the prognos-
tic system becomes preferable to a redundancy system
due to less required maintenance.

• Situation 10: High Manufacturing Cost
( Cmb = 500000, CBM and Rec. Cmf = 5000, Red.
Cmb = 50000 )
When the underlying system is costly to manufacture,
redundancy costs increase, leading the recovery system
to be preferable.

Market/Organizational Situation

• Situation 11: Low Scale, High Cost
( n = 10, cdb = 10, 000, 000, CBM, Rec cdb =
5, 000, 000 )
Manufacturing at a low scale causes the development
costs required to implement a health management sys-
tem to factor more into the overall cost.

6
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Table 1. Comparison of Design Options Using Cost Model for Resilient Features in Baseline Scenario

Fault Costs Baseline Design Increased Inspection PHM (CBM) Hot Redundancy PHM (Recovery)
New Fault Rate 5.00E-06 5.00E-06 5.00E-06 1.00E-05 5.00E-06
Effectiveness 0.5 0.95 0.999995 0.9999
False Alarm Rate 1.00E-05 1.00E-05 2.00E-05 1.00E-05
Unmitigated Failure Cost $16,000,000.00 $16,000,000.00 $16,000,000.00 $16,000,000.00 $16,000,000.00
Mitigated Fault Cost $0.00 $300.00 $400.00 $900.00 $100,000.00
False Alarm Cost $300.00 $400.00 $900.00 $100,000.00
Unmitigated Failure Rate 5.00E-06 2.50E-06 2.50E-07 2.50E-11 5.00E-10
Mitigated Fault Rate 2.50E-06 4.75E-06 1.00E-05 5.00E-06
Lifecycle Unmitigated 1.25E-01 6.25E-02 6.25E-03 6.25E-07 1.25E-05
Lifecycle Mitigated 0 6.25E-02 1.19E-01 2.50E-01 1.25E-01
Lifecycle False Alarms 0 2.50E-01 2.50E-01 5.00E-01 2.50E-01
Unmitigated Failure Costs $2,000,000.00 $1,000,000.00 $100,000.00 $10.00 $200.00
Mitigated Fault Costs $0.00 $18.75 $47.50 $225.00 $12,498.75
False Alarm Costs $0.00 $75.00 $100.00 $450.00 $25,000.00
Total Fault Costs $2,000,000.00 $1,000,093.75 $100,147.50 $685.00 $37,698.75
Total Fault Costs (NPV) $1,322,923.19 $661,523.61 $66,243.72 $453.10 $24,936.28
Operational Costs
Maintenance Interval (hrs) 100 1000 400 500
Per-interval cost $100.00 $120.00 $200.00 $200.00
Usage Cost ($/hr) $400.00 $400.00 $400.01 $402.00 $400.01
Usage Revenue ($/hr) $500.00 $500.00 $500.00 $499.00 $500.00
Usage Profig ($/hr) $100.00 $100.00 $99.99 $97.00 $99.99
Total Operations 250.00 25.00 62.50 50.00
Total Maintenance Cost $0.00 $25,000.00 $3,000.00 $12,500.00 $10,000.00
Total Usage Profit $2,500,000.00 $2,500,000.00 $2,499,750.00 $2,425,000.00 $2,499,750.00
Total Operational Profit $2,500,000.00 $2,475,000.00 $2,496,750.00 $2,412,500.00 $2,489,750.00
NPV Operational Profit $1,653,653.99 $1,637,117.45 $1,651,504.24 $1,595,776.10 $1,646,874.00
Design and Manu. Costs
Baseline Development Costs $100,000,000.00 $100,000,000.00 $100,000,000.00 $100,000,000.00 $100,000,000.00
Feature Development Costs $0.00 $10,000.00 $3,000,000.00 $500,000.00 $3,000,000.00
Baseline Manu. Costs $80,000.00 $80,000.00 $80,000.00 $80,000.00 $80,000.00
Feature Manufacturing Costs $0.00 $0.00 $800.00 $4,000.00 $800.00
Single-System Dev. Costs $500,000.00 $500,050.00 $515,000.00 $502,500.00 $515,000.00
Total Manufacturing Costs $80,000.00 $80,000.00 $80,800.00 $84,000.00 $80,800.00
Total Design and Manu.Costs $580,000.00 $580,050.00 $595,800.00 $586,500.00 $595,800.00
Totals
Total Value -$80,000.00 $894,856.25 $1,800,802.50 $1,825,315.00 $1,856,251.25
Total NPV -$249,269.20 $395,543.84 $989,460.51 $1,008,823.00 $1,026,137.73
KEY: Input Response NPV

• Situation 12: Low Usage
( T = 2000 )
When the the product is not used much, the effect on op-
erational and failure costs are also less of a factor, mak-
ing the development costs a more significant factor. This
does not change the preferability in this case.

• Situation 13: High Discount Rate
( i = 0.2 )
Similar to the other organizational situations, a high dis-
count factor increases the effect of up-front development
costs on the preferability of design options.

4.3. Discussion

The effect of various design scenarios on design choice in
Figure 3 shows how a value model can adapt the fault mit-
igation approach to the individual market and technological
situation for a given design problem. For the model to be
valid, it would be expected that a situation in which a given
PHM approach has the highest value would have the great-
est opportunity for that approach, as well as some industry
adoption. As a check that this model gives appropriate recom-
mendations, the insights provided by this model are discussed
and compared with known industries where PHM systems are
adopted.

If safety is the primary consideration, the effect of the feature

on mitigating risk (effectiveness E, mitigated fault scenario,
false alarm rate, false alarm cost) become the dominant re-
quirements in developing the PHM feature. In these cases (all
situations except 7), there is less of a case for PHM systems
compared to a traditional redundancy system unless the fault
itself is difficult to mitigate or mask and must be prevented
instead (Situation 4), the redundancy system is overly prone
to common mode errors (Situation 3), the recovery state has a
low cost (Situation 5), or some other concern becomes more
dominant (Situations 8, 9, and 10). This is characteristic of
general aviation, where PHM systems are still not generally
used as safety features when a redundancy or fault-reducing
design is a viable option, despite weight being a concern.

Operational costs become the primary consideration when
there is a high cost to performance or performing mainte-
nance. When performance is a primary consideration (Situa-
tion 8), the increased weight, volume, and resource consump-
tion of a redundancy system can become untenable, mak-
ing PHM systems–which only require increased sensors and
computing–preferable. This is characteristic of applications
in military aerospace, such as rocketry and fighters or civilian
infrastructure such as bridges where PHM has been imple-
mented. When maintenance is the primary consideration (Sit-
uation 9), PHM systems also become preferable since they
have the ability to reduce the amount of maintenance per-
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Figure 3. Comparing the value of fault mitigation features under different design situations.

formed while focusing on maintenance that is preventative,
which raises the average time between operations as well as
the cost of each operation. This is characteristic of current
system use in industrial manufacturing, wind farms, nuclear
energy production, and railways.

Design cost becomes a primary consideration when the sys-
tem has low scale, low usage, or a high discount factor (Sit-
uation 11, 12, and 13, respectively). While there is some
case to implementing a PHM system in these instances when
the manufacturing cost of a redundancy is high (such as the
nuclear industry), the up-front costs of developing the prog-
nostic system can otherwise become a barrier to preferability.
Today, most development of PHM systems is by large, estab-
lished companies, rather than start-ups which have a much
higher internal discount factor since these organizations have
more limited funds and a variety of investments that will nom-
inally yield higher returns on the dollar (such as the initial
design of a new product, scaling manufacturing operations,
etc.).

This shows that the recommendations of a cost model that
determines value of different fault-mitigating approaches
can give recommendations consistent with where those ap-
proaches are actually economical in industry,

5. CONCLUSION

This paper provides framework for developing early PHM
system benchmarks based on high-level requirements using
a value-driven framework. In this framework, a model is
developed of overall cost based on system criteria, includ-
ing resilience, productivity, and implementability. Using this
model, a number of design options can be compared against
each other in a systematic, coherent process. A demonstra-
tion of this process is provided comparing prevention and
recovery-based PHM systems with traditional redundancy
and increased inspections with a simple cost model. To show
how cost models can adapt design choices to the overall de-
sign situation, a variety of design cases are shown with dif-
ferent parameter values for each of those situations. Results
from the cost models appear to be consistent with known in-
stances where PHM systems are adopted (and are therefore
practical) in industry.

5.1. Future Work

As shown in Figure 3, the relative preferability of fault-
mitigating approaches depends heavily on the situation con-
sidered. Typically, when practitioners develop value mod-
els, they only consider a single situation (e.g. the Nominal
Scenario) which relies on a number of uncertain assumptions

8
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about the technical and product environment. Early in the
design process, however, there may be uncertainties about
which situation the product will be used in, and there may
be some ability to change the situation to accommodate a
particular solution, which should be taken into account in
design processes. Methods need to incorporate uncertainty
into value models to provide the optimal choice over the
range of possible scenarios and provide means of determin-
ing how certain the given recommendations are, which can
help determine whether a value assessment is conclusive or
whether more information is needed. Additionally, meth-
ods need to be provided for PHM practitioners that support
decision-making not just in a top-down market-driven con-
text (i.e. finding the best technology for a given problem)
but in a bottom-up technology-driven context (i.e. finding the
best market for a given technology).
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