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ABSTRACT 

Reciprocating machines such as piston pumps, compressors 

and internal combustion engines are widely used in a wide 

range of manufacturing industries including automotive, 

aerospace, paper, oil and gas, etc. Reciprocating seal located 
directly on the rod/piston of a reciprocating equipment is used 

for preventing leakage and reducing wear between two parts 

that are in relative motion. Seal failure is one of the foremost 

causes of breakdown of reciprocating machinery and such a 

failure can be catastrophic, resulting in costly downtime and 

large expenses. Assessment of reciprocating seal is extremely 

important in the manufacturing industry to avoid fatal 

breakdown of reciprocating equipment and machines. 

Prediction of time series using predictive maintenance 

practices and tools to estimate the evolution of the future 

condition of the system is of great interest to the operators for 

taking timely and appropriate maintenance decisions.  In this 
paper, we have built and trained a hybrid PSO-SVM model 

to predict the degradation process of reciprocating seals. 

Particle swarm optimization is used to optimize the penalty 

factor and kernel parameter of SVM model. Controlled 

experiments are designed and performed, and data collected 

from a dedicated experimental set-up is used to validate the 

proposed approach.  

1. INTRODUCTION 

Dynamic seals such as reciprocating seals are used to separate 

or retain fluids, pressure and remove contaminants.  Failure 

of reciprocating seal is one of the foremost causes of 
breakdown of reciprocating machinery and can lead to 

catastrophic consequences, resulting in costly downtime and 

large expenses. Replacing a seal after its failure can be 

extremely expensive, while replacing the seal much earlier 

before its failure may lead to lower life utilization. 

 Figure 1 shows the cross-section of reciprocating seal on a 

rod within reciprocating machines. Material characteristics, 

amount of seal compression, surface irregularities, 

inadequate lubrication, fluid contamination, seal size are 

some of the factors that influence a dynamic seal failure 

(Center, 1992). The seal wear due to friction between the seal 

and piston/rod results in increased friction force and 

excessive leakage.  

Predictive model to estimate the evolution of the future 

condition of seal will result in reduced downtime and 
maintenance cost, and improved maintenance and logistic 

planning. In the last decade, numerous physics-based 

prediction methods, which demands direct estimation of 

physical parameters such as material, seal and mechanical 

properties have been proposed by researchers (Salant, Maser, 

& Yang, 2007; Yang & Salant, 2008) has been developed to 

assess the degradation of polymeric seals. Also, physics-

based approaches are very specific to the material and 

geometry of the system and requires a new model with any 

change in the system. Whereas, data-driven based predictive 

method utilizes indirect measurements using sensor 
technology and computational capabilities to monitor the 

current running condition of seals. This technique is primarily 

applied to metallic parts such as bearings, gear box, etc. and 

there is a need for research on data-driven based predictive 

method that can be applied to engineering systems such as 

polymeric elastomer seals.  

In our previous studies, we have developed a data-driven 

framework utilizing friction torque of rotary seals to classify 

the running condition of rotary seals (Ramachandran & 

Siddique, 2018a, 2018b, 2019b). In this study, we aim to 

predict the degradation of reciprocating seals based on 

friction force signal using Support Vector Machines (SVM). 
To validate our approach, run-to-failure test was conducted 
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to capture the performance degradation of reciprocating seal 

using a dedicated reciprocating test set-up.   

Support Vector Machines has shown to be successful in 

studying degradation of components because of its 
performance modeling and generalization attributes, when 

compared to widely used methods including neural network 

(Caesarendra, Widodo, & Yang, 2011; Sun, Zhang, & He, 

2011). SVM was found to be successful in predicting the 

degradation of bearing, batteries and other electronic and 

mechanical components. Dong and Luo (2013) developed a 

PCA based optimized LS-SVM model to predict the 

degradation process of bearings. Sun et al. (2011) used the 

SVM-based model to predict bearing degradation by using 

few failed bearing data. They allocated different weights to 

different bearings and the information is fused to predict the 

degaradtion of test bearing. Park and Jeong (2013) used 
recurive SVM to predict the degradation of secondary 

rechargebale battery. Guo, Ma, Xiao, and Tian (2012) 

developed a PSO-SVM model to diagnose faults in electronic 

system. Xu, Wu, Guo, and Hu (2010) used LS-SVM to 

predict the life of barrels of tank guns. According to Huang, 

Wang, Li, Zhang, and Liu (2015)  applications of SVM in 

building degradation modes are limited to componenets such 

as bearings and batteries; and they stress the need for research 

on applications of SVM in predicting the degradation of other 

key componenets. 

The most challenging aspect of SVM is tuning the 
hyperparameters of SVM during the training phase, which 

requires solving an optimization problem. In our previous 

paper we implemented grid search method to optimize the 

SVM parameters (Ramachandran & Siddique, 2019a) and in 

this paper, we have implemented phase space reconstruction 

to determine the input and output vectors of the prediction 

model and particle swarm optimization, a meta-heuristic 

approach,  to optimize the SVM parameters to improve the 

prediction accuracy.   

The remainder of this paper is structured as follows: 

description of experimental test set-up, data collection, phase 

space reconstruction, particle swarm optimization and 

support vector machines are explained in detail in 

experimental methods section; results of our approach are 
discussed in results and discussion section; study conclusions 

are summarized in conclusion section.  

2. EXPERIMENTAL METHODS 

2.1. Test Set-up 

Oscillating seal test fixture mimics the mechanical dynamics 

of a conventional positive displacement piston pump. 

Mechanics of interest are isolated to the 

reciprocating/shuffling motion of a piston or rod within a 

stationary bore. There exist two common methods of sealing 

fluids within dynamic reciprocating applications: piston seals 

and rod seals. Interest here will be to characterize the 

performance of rod seals. A main pressure chamber 
encapsulates an interchangeable core. This modular core can 

be made with many distinct seal geometry gland dimensions 

for the purpose of testing a variety of polymer seals with 

differing cross sections. Experimental runs depicted here 

concern standard AS568, size 214 circular cross section O-

rings. Reciprocating through this modular core lies a 

precision ground rod of desired surface roughness 16RMS.  

Reciprocating rod is driven by a Baldor 3HP M3611T-9 

alternating current three-phase induction motor affixed to a 

Baldor 10:1 gear reduction transmission whose output shaft 

turns a cam-arm (as shown in Figure 2). This cam-arm pushes 
and pulls the rod through one reciprocation for every 

revolution of gearbox output shaft. Stroke length of 

reciprocation is fixed at 10.5 inches and is determined by 

length of cam-arm. 

Baldor 3HP induction motor is driven by an ABB ACS150-

03U-09A8-2 3HP DRIVE. This variable frequency drive 

gives motor speed and torque control by varying the 

frequency and voltage supplied to the motor by main power 

 
Figure 1. Cross-section of a reciprocating seal on a 

reciprocating rod 

Elastomeric Ring

Sealing Lip

Sealing Edge

Rod

Lubricant Thin Film

 
Figure 2. Test set-up showing induction motor, gearbox 

cam-arm diving reciprocating rod motion 
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lines. Frequency ranges from 0-60 Hz, for out motor 0 Hz 

equates to 0RPM and 60 Hz equates to 1750 RPM.  

A fixed motor speed and a fixed cam-arm length will 

parameterize experimental runs expressed in this paper. 

Motor speed at gearbox output shaft has been fixed at 30 
RPM and cam-arm length set to 5.5 inches. Recall that for 

every separate revolution of the motor gearbox output shaft, 

the cam-arm moves through one revolution, which translates 

circular motion into linear motion, hence, the title cam-arm. 

This means that for every separate revolution, the cam-arm 

moves a total of 11inches, 5.5 inches of stroke in compression 

and 5.5 inches of stroke in tension. For our purposes, with the 

fixed parameters specified above, one reciprocation equates 

to 330 inches of rod travel per minute.  

To keep linear motion consistent and without binding, 

Thompson linear guide and ball bearing carriage are mated to 

reciprocating rod. As power is transmitted from motor and 
cam-arm, opposing end of cam-arm pivots on a shuttle 

specifically made to accept power transmission. This shuttle 

has been designed to transmit cam-arm movement into an 

Omega Engineering LC203-1K bi-directional load cell. As 

shuttle pushes reciprocating rod through ‘compression cycle’ 

and pulls reciprocating rod through ‘tension cycle’ real time 

force data is acquired. Overview of reciprocating rod, load 

cell and shuttle can be seen in Figure 3. 

Main pressure chamber and seals are energized through the 

hydraulic pressurization of Aero Shell 560 Turbine oil. 

Considering the ‘leak rate’ of seals to be of interest it is 

required to keep system at a constant pressure elimination one 

variable in the experimental run. To counteract the transient 

effects of mechanical cycling of a hydraulic pump, a specialty 

hydraulic piston accumulator with active piston position 

feedback is used to transmit high-pressure nitrogen to high-

pressure hydraulic oil.  

Hydraulic piston accumulator with live piston positioning 

allows for active tracking of displaced fluid through system, 

or ‘leaked fluid while system is kept at constant pressure. The 

hydraulic piston accumulator accomplishes this by 

implementing an MTS GHT0060UFD21V0 liner variable 

differential transducer to actively track position of piston 

within bore of accumulator.  

Special design of experiment conditions requires simulating 
real operating conditions of seals within componentry 

exposed to harsh temperature conditions. Test chamber 

assembly has been outfitted with large diameter 240volt mica 

heating bands. Heating bands are controlled with Omega 

Engineering iSeries programmed proportional integral 

differential (P.I.D.) temperature controller. This controller 

allows precise temperature control +/- 1C for all 

experimental runs conducted thus far up to 200C.  

2.2. Data Collection 

Real time data from all transducers is acquired through the 
utilization and combination of National Instruments 

LabVIEW in conjunction with National Instruments USB X-

Series 6341 Multifunction I/O device. Device acquires data 

through high speed TDMS streaming and functions as a 

controller for all peripheral componentry. Eight run-to-

failure tests at 150C, 1500 PSI are performed to collect 

information on the force required to move reciprocating rod 

some unit length per unit time.  20 data points are sampled 

every second. Figure 4 shows the run-to-failure test of seal-1 

of data length of 60,370. For a better visualization, a segment 

of run-to-failure force signal is shown in Figure 5. Figure 5 

shows two regions of interest: Region 1 will overview force 

vs. time while reciprocating rod is in tension and Region 2 
will overview Force vs. Time while rod is in compression. 

Considering these two regions to be mirrors of each other, we 

will simply limit our discussion to Region 1 knowing that 

Region 2 is the inverse. Within Region 1 we see a positively 

oriented parabolic trend from point A-B. If we consider this 

region to be in simple tension, then we would expect the force 

graph to be almost perfectly flat therefore why is it not? 

Experiments have led us to believe the force graph is affected 

by two things: first is rooted in the mechanics of this system. 

 
Figure 3. Test set-up showing testing chamber, 

reciprocating rod, load cell and shuttle 

 
Figure 4. Run-to-failure test of seal-1 
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There exists some small acceleration and deceleration at the 

leftmost and rightmost limit of the reciprocating stroke. This 

causes upon switching from tension to compression B-B* or 

compression to tension A*-A some momentary ‘jerk’ 

resulting in a transient spike in force graph. Second comes 
from the idea of seal wiping. This phenomenon exists when 

the seal physically wipes excess lubricating film from the 

reciprocating rod. At leftmost and rightmost stroke limits the 

seal has less fluid to wipe away resulting in a not fully 

lubricated seal which in turn increases force seen at stroke 

limits. It takes around 3.90 seconds to complete a tension and 

compression cycle.  

2.3 Phase Space Reconstruction 

Following feature extraction, phase space reconstruction 

based on Takens embedding theorem is used to construct a 

set of vectors whose components are lagged version of time 

series (Takens, 1981). Let  Xt = {𝑥1, 𝑥2, … , 𝑥𝑁} be a univariate 

time series of length N and 𝑦𝑖𝑚 = {𝑥𝑖 , 𝑥𝑖+𝜏 , … , 𝑥𝑖+(𝑚−1)𝜏 , 

where 𝑖 =  1,2, … , 𝑁𝑚  , 𝑁𝑚 = 𝑁 −  (𝑚 − 1)𝜏  is the length 

of reconstructed vector, 𝜏  is the time delay, m is the 

embedding dimension. In 1986, Fraser and Swinney found 

the concept of time delay for embedding a univariate time 

series (Fraser & Swinney, 1986). The time delay 𝜏  is 

estimated using average mutual information which is a 

nonlinear generalization of the autocorrelation function. The 

average mutual information estimates how much a time series 

𝑥(𝑡) can provide information on another time series 𝑥(𝑡 + 𝜏) 

and is given by: 

𝐼(𝑥(𝑡), 𝑥(𝑡 + 𝜏)) =  ∑ 𝑝𝑖𝑗  (

𝑖𝑗

𝜏) log (
𝑝𝑖𝑗(𝜏)

𝑝𝑖𝑝𝑗
)       (1) 

 Where, 𝑝𝑖 is the probability that the time series 𝑥(𝑡) is in the 

bin 𝑖 of the histogram constructed from data points in series 

𝑥(𝑡), 𝑝𝑗  is the probability that the time series 𝑥(𝑡 + 𝜏) is in 

the bin 𝑗 of the histogram constructed from data points in 

series 𝑥(𝑡 + 𝜏) and 𝑝𝑖𝑗  is the probability that the time series 

𝑥(𝑡) is in the bin 𝑖 and 𝑥(𝑡 + 𝜏) is in the bin 𝑗. The optimal 

time delay is estimated using the position of the first 

minimum of average mutual information function.  

The embedding dimension m is determined using CAO 

method (Cao, 1997) and is defined as: 

𝑎(𝑖, 𝑚) =  
 ‖𝑦𝑖  (𝑚 + 1) −  𝑦𝑖

𝑛𝑛(𝑚 + 1)‖

‖𝑦𝑖  (𝑚) − 𝑦𝑖
𝑛𝑛(𝑚)‖

 (2) 

Where, ‖∙‖ is the Euclidean distance given by the maximum 

norm. 𝑦𝑖(𝑚) is the 𝑖𝑡ℎ reconstructed vector and  𝑦𝑖
𝑛𝑛(𝑚 + 1) 

is the nearest neighbor of 𝑦𝑖(𝑚) in embedding dimension m. 

The mean value of all 𝑎(𝑖, 𝑚) is defined as: 

𝐸(𝑚) =  
1

𝑁 − 𝑚𝜏
 ∑ 𝑎(𝑖, 𝑚)

𝑁−𝑚𝜏

𝑖=1

 (3) 

E(m) depends on dimension m and lag time 𝜏 and its variation 

from m to m+1 is given by a parameter 𝐸1: 

𝐸1(𝑚) =  
𝐸(𝑚 + 1)

𝐸(𝑚)
 (4) 

 E1(m) stops increasing when m is greater than some value 

mo. E1(m) increases slowly or stops changing if m is 

significantly large and to overcome this CAO introduced 

another quantity E2(m) which is given by: 

𝐸2(𝑚) =  
𝐸∗(𝑚+1)

𝐸∗(𝑚)
    (5) 

Where 

𝐸∗(𝑚) =  
1

𝑁 − 𝑚𝜏
 ∑ |𝑥𝑖+𝑚𝜏 −  𝑥𝑖+𝑚𝜏

𝑛𝑛 |

𝑁−𝑚𝜏

𝑖=1

  (6) 

Therefore, E1(m) is estimated to determine the minimum 

embedding dimension of time series and E2(m) is used to 

distinguish the deterministic signals from stochastic signals 

2.4 Particle Swarm Optimization 

Particle swarm optimization, a population based intelligent 

algorithm proposed by Kennedy and Eberhart in 1995 is used 

to optimize SVM regression parameters (Eberhart & 

Kennedy, 1995). PSO simulates the behavior of swarms in 

solving optimization problems iteratively because of its 

simplicity, fast convergence and high performance. PSO is 
based on a set of particles and their coordinates represent a 

potential solution of an optimization problem. The position 

and velocity of 𝑖𝑡ℎ particle in a population with N particles in 

a d- dimensional space is given by 𝑋𝑖(𝑡) = (𝑥𝑖1(𝑡),

𝑥𝑖2(𝑡), … , 𝑥𝑖𝐷(𝑡)) and 𝑉𝑖(𝑡) = (𝑣𝑖1(𝑡), 𝑣𝑖2(𝑡), … , 𝑣𝑖𝐷(𝑡)) . 

PSO algorithm updates the velocity and position of the 

particles at iteration t+1 using the following equations.  

𝑣𝑖𝑑(𝑡 + 1) =  𝜔𝑣𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑝𝑖𝑑(𝑡) −  𝑥𝑖𝑑(𝑡)) +

                           𝑐2𝑟2  (𝑝𝑔𝑑(𝑡) − 𝑥𝑖𝑑(𝑡))  

 (7) 

 
Figure 5. A segment of force signal showing tension and 

compression cycle 
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𝑥𝑖𝑑(𝑡 + 1) =  𝑥𝑖𝑑(𝑡) +  𝑣𝑖𝑑(𝑡 + 1)          (8) 

Where  i = 1, 2, …, N denotes particles of population size N 

d= 1, 2, …, D denotes dimension of search space 

with D dimensions 

t = current iteration with the number of iterations T 

𝜔 = inertia weight to balance the local and global 

search abilities of particles 

 𝑐1, 𝑐2 = learning factors 

𝑟1 , 𝑟2  = random functions with uniform distribution 

of (0,1) 

 𝑣𝑖𝑑(𝑡)= velocity of the 𝑖𝑡ℎ particle in 𝑡𝑡ℎ iteration 

 𝑥𝑖𝑑(𝑡)= position of the 𝑖𝑡ℎ particle in 𝑡𝑡ℎ iteration 

 𝑝𝑖𝑑(𝑡)= pbest (local best) position of the 𝑖𝑡ℎ particle 

 𝑝𝑔𝑑(𝑡)= gbest (global best) position of the particle 

 

 

Figure 6. Flowchart showing the PSO-SVM Procedure 

 

The flowchart of optimizing SVM regression parameters: 

penalty factor C and kernel function parameter g based on 

PSO is shown in Figure 6 and the procedure is given below: 

1. Randomly initialize population size, learning 

factors, inertia weight, random functions, position 

and velocity of each particle. Initialize the SVM 

regression parameters and set the termination 

condition.  

2. SVM model is trained with the initialized 

parameters and the fitness value of each particle is 

calculated using the PSO fitness function given in 

Eq. (17) 

3. The pbest and gbest values are adjusted based on the 
particle fitness value and the velocity and position 

of the particles are updated using the equation given 

in Eq. (7) and (8).  

4. The SVM parameters are updated and the model is 

retrained is retrained using the PSO fitness function. 

Step 3 and step 4 is continued until the termination 

condition is satisfied. 

5. When the termination condition is met, optimal 

parameters C and 𝛾 of SVM regression is found.  

6. Retrain SVM regression with the optimal values and 

tested on the SVM regression.  

2.5 Support Vector Regression 

Support Vector Machine based on statistical learning theory 

is put forward by Vapnik in 1995. Given a set of training data 

{(X1, y1), (X2, y2), …, (Xl, yl)}, Xi  Rm, yi   R, where yi is the 

dependent variable for a given set of independent variable Xi, 

SVM generalization to Support Vector Regression (SVR) is 

performed by defining an -insensitive region, inside which 

errors are ignored. SVR formulates it as an optimization 

problem, where the objective is to find the flattest region 

(means to have a small ) that contains most of the training 

instances while minimizing the prediction error (distance 

between the predicted and actual values). The regression in 

terms of constrained optimization problem can be written as:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   
1

2
 ‖𝒲‖2 + 𝐶 ∑(𝜉𝑖

𝑙

𝑖=1

+ 𝜉𝑖
∗) 

     
(9) 

  subject to      𝑦𝑖 − 𝒲𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖                                    (10) 
  𝒲𝑥𝑖 + 𝑏 − 𝑦𝑖  ≤ 𝜀 + 𝜉𝑖

∗                                                    (11) 

   𝜉𝑖 , 𝜉𝑖
∗  ≥ 0                                                                    (12) 

where 
1

2
 ‖𝒲‖2  is the weight vector, yi is the desired value 

and the tuneable parameter C is the penalty factor that 

determines the trade-off between the flatness and the extent 

to which deviations larger than 𝜀  are tolerated. The loss 

function defined is non-differentiable due to the absolute 

value in function, so the positive slack variables 𝜉𝑖 , 𝜉𝑖
∗  are 

introduced to account for the errors in points that lie outside 

the -insensitive region. Applying Lagrangian multiplier, this 

problem is converted into dual optimization problem as 

follows: 

max [−
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗𝑛
𝑖,𝑗=1 ) (𝛼𝑗 − 𝛼𝑗

∗)(𝑥𝑖 , 𝑥𝑗) −

𝜀 ∑ (𝛼𝑖 − 𝛼𝑖
∗) +  ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑛
𝑖=1

𝑛
𝑖=1 ]  

 

(13) 

Subject to ∑ (𝛼𝑖 − 𝛼𝑖
∗) = 0𝑛

𝑖=1  and 𝛼𝑖 , 𝛼𝑖
∗ 𝜖 [0, 𝑐] (14) 
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Where 𝛼𝑖 , 𝛼𝑖
∗  are lagrangian multipliers. For nonlinear 

regression, SVM uses a kernel function.  It performs by 
mapping the data X into a high dimensional feature space by 

non-linear mapping and then performing regression in the 

feature space. Using the kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) , the 

regression function is as follows: 

𝑓(𝑥) =  ∑ (𝛼𝑖 − 𝛼𝑖
∗

𝑛

𝑖,𝑗=1

) (𝛼𝑗 − 𝛼𝑗
∗)𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏 

 

(15) 

Where 𝐾(𝑥𝑖 , 𝑥𝑗)  is a kernel function. There are different 

kernel functions such as Linear, Polynomial, Radial Basis 

Function and Sigmoid. In this paper, RBF function is utilized, 

and it is given by:  

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) , (𝛾 > 0) (16) 

Where 𝛾 is the RBF kernel parameter.  

2.6 Performance Criteria 

The performance of the model is evaluated using Mean 

Square Error (MSE). The MSE is defined as: 

 
𝑀𝑆𝐸 =  

1

𝑁
∑(𝑝𝑖 − 𝑦𝑖)

2

𝑁

𝑖=1

 (17) 

where N is the total number of data points, yi is the actual 

value and pi is the predicted value of the model.  

3. RESULTS AND DISCUSSION 

First, the entire time series is segmented into n segments and 

features are extracted from each segments of the time series. 

For example, length of seal-1 run-to-failure test is 60,372 and 

it is segmented into 774 segments (774 cycles). Main reason 

for the reciprocating seal to fail is due to rolling, during which 

the friction increases leading to increased friction force and 

leakage.  

As the seal degrades, compression peak: A*(maximum force 
during compression cycle) and tension peak: B (maximum 

force during tension cycle) shown in Figure 5 increases which 

results in significant leakage. The increase in tension peak 

can be observed in Figure 7. It was found that as the tension 

peak begins to increase and approach a force of 60 pound-

force, a significant amount of leakage was observed. This can 
be observed by comparing Figure 8a and 8b which shows the 

degradation region (data points 430-515) in terms of tension 

force and leakage. After the failure threshold, seals start 

leaking excessively (> 1 mL/cycle) and are labeled as failed. 

From Figure 5 we can see that the compression and tension 

regions are mirror image of each other and therefore, we 

decided to utilize tension peak to predict the degradation 

process of reciprocating seals. The tension peak value is 

extracted from every tension cycles of the raw force signal; 

this way we reduced the complexity of the raw data while 

also preserving the characteristics of the original data as 

much as possible.  

Out of eight run-to-failure tests, three tests (seal-1, seal-5, 

seal6) are used to develop the proposed model and the 

proposed model is tested on the rest. Figure 9 shows the 

normalized tension peak signal of run-to-failure tests. In 

order to verify if the tension peak feature would be an ideal 

indicator of reciprocating seal degradation, Spearman’s rank 

 
Figure 7 Degradation trend captured by tension peak 

with the rectangular box showing the degradation region 

 
(a) 

 
         (b) 

Figure 8 Degradation region in terms of (a) tension peak 

and (b) leakage 
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correlation coefficient is used to assess the monotonic 

relationship between the tension peak and run-to-failure time 

duration of the test. The average correlation coefficient for 

the training samples is found to be 0.9592, which indicates 

tension peak to be a strong indicator of seals degradation 
process. Average mutual information method is used to 

estimate the time delay for the phase space reconstruction. It 

was found that the average mutual information function value 

reached its first minimum when the time delay was 3 which 

can be observed in Figure 10.  

Then the embedding dimension is selected by the CAO 

method and Figure 11 shows the selection of the embedding 

dimension of tension force degradation signal. It can be seen 
that the optimal embedding dimension for the signal of 

interest is 7. 

 

                                 Figure 9 Normalized tension peak signal of run-to-failure test

 

LIBSVM-3.1-Faruto ultimate 3.1 mode toolbox were used to 
implement SVM model. The performance of the SVM 

regression model depends on the penalty factor C and kernel 

parameter 𝛾 . In this study, an intelligent optimization 

algorithm: Particle Swarm Optimization was implemented to 

optimize the SVM parameters. Penalty factor C is an 

important parameter on which the accuracy of the regression 

model depends on. When the value of C is too large, the 

fitting of training samples will be very high, but the 

generalization ability of the model will be poor whereas when 
the value of C is too small, optimization process will take 

very long, and the search will be incomplete leading to a 

model with poor fitting and low generalization ability. 

Therefore, the value of C is usually between 0 and 100 to 

meet the requirements. 

 

                               

        
Figure 10 Time delay estimation using Mutual Information Method 
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Figure 11 Embedding dimension estimation using CAO method

 

The initial parameters of PSO were set to 𝜔 = 0.6, 𝐶1 =
1.5, 𝐶2 = 1.7, maximum iteration was set to 100, population 

size was set to 20 and the penalty factor was in the range of 
(0.1,100) and kernel parameter was in the range of (0.01, 

1000). When the termination condition was met the optimal 

parameters were found to be  C =  15.8136 and 𝛾 =
 0.01. The optimal SVM parameters are used to train the 

SVM model and predict seals degradation. Three run-to-

failure tests were used to train the optimized SVM model and 

the model was tested on the remaining tests. We used the 

trained model to predict the degradation region (the region 

before the seal approaches failure threshold) of the remaining 

tests. The average test MSE of PSO-SVM model on the 
unseen data was found to be 0.00206. Figure 12 shows the 

actual versus the predicted trend of seal-4. It is obvious from 

Figure 12 that the predicted degradation trend is very close to 

that of the actual trend.  

 

Figure 12 Actual vs predicted for Seal-4 using proposed 

method 

 

To validate the proposed approach, we used genetic 

algorithm to optimize SVM parameters and the optimized 

SVM model was tested on the unseen dataset. Also, we 

implemented an optimized distributed gradient boosting 

system: XGBoost to predict the degradation process of seals. 

In addition to MSE, we also used Mean Absolute Error to 

compare the performance of different models. Table 1 shows 

the performance of the proposed approach compared to other 

machine learning algorithms ad it is found that the proposed 

method outperforms other methods used to validate our 

findings.     

Table 1 Performance comparison of different models. 

 
Failure 

Test 

PSO-SVM GA-SVM XGBoost 

MSE MAE MSE MAE MSE MAE 

Seal-2 0.0010 0.0247 0.0015 0.0283 0.0048 0.0575 

Seal-3 0.0029 0.0426 0.0047 0.0563 0.0032 0.0480 

Seal-4 0.0017 0.0355 0.0033 0.0510 0.0078 0.0791 

Seal-7 0.0031 0.0457 0.0070 0.0726 0.0038 0.0517 

Seal-8 0.0015 0.0335 0.0030 0.0468 0.0022 0.0369 

Average 0.0020 0.0364 0.0039 0.0510 0.0043 0.05464 

 

4. CONCLSUION 

Data-driven prognostics of dynamic seals such as 

reciprocating and rotary seals are not very well studied. SVM 

has found to be effective in predicting the degradation of 

components such as batteries, bearings and other electronic 

components. There is little no research on the application of 

SVM in predicting the future running condition of polymeric 

components such as seals. In this paper, we have presented a 
data-driven approach to predict the degradation process of 

reciprocating seals based on friction force using optimized 
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SVM model. The most challenging aspect of tuning 

hyperparameters in SVM was carried out using particle 

swarm optimization. The proposed approach was validated 

using the data collected from an experimental test set-up 

dedicated to test reciprocating seals. This study shows that 
SVM model with optimized parameters using PSO is 

effective in predicting the degradation process of 

reciprocating seal.  
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