
 

1 

A Framework to Interpret Deep Learning-Based Health 
Management System with Human Interactions 

Namkyoung Lee1, Michael H. Azarian1, and Michael G. Pecht1 

1 Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA 
nklee@umd.edu 

mazarian@umd.edu 
pecht@umd.edu 

 
ABSTRACT 

Deep learning has shown good performance in detecting a 
product’s faults and estimating the remaining useful life of a 
product. However, it is hard to interpret deep learning-based 
health management systems because deep learning is often 
regarded as a black box. In order to make a maintenance 
decision based on the result of the management system, 
humans need to know how it gave the outcome. This study 
aims to develop a framework that utilizes human interactions 
during system development to understand the internal 
process of deep learning. The study will demonstrate the 
framework on bearing datasets. 

1. PROBLEM STATEMENT 

Deep learning is a type of machine learning algorithms that 
utilizes multiple layers of neural layers to classify or fit the 
trend of data. Compared to conventional machine learning 
algorithms such as a support vector machine and a decision 
tree, deep learning can learn features by itself and has more 
flexibility to fit data using many parameters. Because of these 
characteristics, deep learning performed better when solving 
complex problems.  

Since detecting faults and predicting remaining useful life 
(RUL) of a product can be complex problems, deep learning 
has been used for diagnostics and prognostics for many 
products. Although deep learning has shown promising 
results, reasoning the results was difficult because deep 
learning is considered as a black box. However, in order to 
adopt deep learning-based diagnostics and prognostics in 
practice, the logic inside deep learning should be transparent 
so that humans can understand the outcome of the 
management system. 

In order to reason deep learning, several methods have been 
addressed. One approach was to visualize self-learned 
features of a neural network (Simonyan, Vedaldi, and 
Zisserman, 2013; Dosovitskiy, Springenberg, and Brox, 
2015). Since a neural network gives a result on the basis of 
the features, understanding the features can help comprehend 
the logic of the network. 

Another approach to interpret deep learning was conducting 
sensitivity analysis on a deep learning model (Julian, Olden, 
and Donald, 2002). The authors investigated the weights that 
connect neurons inside the model. Through the analysis, 
humans can understand which inputs influence the output of 
the model most.  

Although the aforementioned approaches showed the 
feasibility of understanding deep learning, a few steps still 
remain when the input of a deep learning model also needs 
interpretation, which is common in the data for diagnostics 
and prognostics. For example, vibrations collected nearby 
gears need processing to interpret the health state of the gear. 
Likewise, several steps that require human interactions are 
needed during the development phase to understand the 
model. 

2. EXPECTED CONTRIBUTIONS  

This study will provide a framework that provides methods 
to interpret a deep learning-based health management system 
with human involvement. Although the main purpose of this 
framework is to understand deep learning for diagnostics and 
prognostics, the framework also aids in validating and 
improving the performance of a deep learning model as a 
result. To be specific, the framework will provide three 
methods that will help understand the behavior of a deep 
learning model as shown in Figure 1. 

The diagram in Figure 1. depicts the process of developing a 
deep learning model. Dashed lines in the diagram indicate the 
suggested methods that have human interactions. 
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Figure 1. Human interactions on developing a deep learning 

diagnostic and prognostic model to improve the 
interpretability of the model. 

 

First, this study will present the method to process raw input 
to better understand the meaning of the input. Especially, the 
method focused on processing spectral data to find features 
of interests using domain knowledge. This process can guide 
a deep learning model to learn certain features that have 
already known as good features for diagnostics and 
prognostics. 

Second, the framework will visualize self-learned features by 
using an autoencoder as a deep learning architecture. 
Autoencoders can reconstruct inputs with self-learned 
features. The method will use this function to infer the 
characteristics that are extracted by features. Using this 
method, humans can inspect the self-learned features to 
determine whether these features are useful for diagnostics or 
prognostics. 

Lastly, this study will provide a method to extract and 
simplify the logic inside a trained deep learning model. To 
extract the logic, sensitivity analysis will be conducted on the 
model. After the analysis, the logic will be transferred to a 
decision tree to make this logic transparent. This method 
enables humans to understand the behavior of a trained deep 
learning model. Therefore, humans can validate the logic of 
the model and get insights for diagnostics and prognostics. 

To demonstrate the framework, the study will provide a case 
study that will guide people who want to understand and 
verify their deep learning-based diagnostic or prognostic 
model.  

3. RESEARCH PLAN 

In order to develop and demonstrate the framework, four 
tasks should be completed as follows:  

1. Devise a framework that allows human involvement 
while developing a deep learning model for diagnostics 
and prognostics 

2. Select a product and experimental datasets to apply the 
framework 

3. Review literature to acquire domain knowledge about 
failure mechanisms of the targeted product, which will 
be used while applying the framework 

4. Apply the framework on the targeted product and 
develop a deep learning-based prognostic model. 

The research will be started by developing a framework that 
was introduced in the previous section. In order to prove the 
framework, a case study will be conducted using available 
prognostic and health management data. The data will be 
selected based on two constraints. First, the data should have 
enough experimental data to train a deep learning model. 
Second, the tested product should have already been 
researched to obtain domain knowledge about the product. 
After the data selection process, literature will be reviewed to 
acquire knowledge. Finally, the framework will be applied to 
the targeted product by developing a prognostic model using 
deep learning. 

3.1. Work Performed 

The framework to understand deep learning was already 
developed and explained in the previous section. To 
demonstrate the framework, a rolling-element bearing was 
selected as a target product because many experimental data 
on the bearing are available in public. Among them, bearing 
datasets used for PHM 2012 prognostic challenge (Nectoux 
et al., 2012) were used as a benchmark. 

In general, failures of the bearings have been monitored 
through spectral analysis (Graney and Starry, 2011). The 
most commonly used precursors in spectral analysis were ball 
pass frequency outer race and ball pass frequency inner race. 
In addition, statistical features gathered from time domain, 
frequency domain, and time-frequency domain were also 
used as precursors in common (Xia et al., 2012).  

These precursors were calculated from training data of the 
bearing datasets and the changes in the precursors were 
monitored. Among the tested precursors, Fourier transform 
results from raw vibration data showed good degradation 
trends as shown in Figure 2.  

 
Figure 2. The results of Fourier transform from bearing2_2 

dataset over time. 
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The graph in Figure 2. is a scalogram of horizontal vibrations 
collected from bearing2_2 dataset. The x-axis and y-axis 
represent the operation time of the bearing and frequency 
bands each. The color of the graph represents the amplitude 
of Fourier transform results. As the bearing degrades, the 
amplitudes of the high-frequency bands monotonically 
increased. Since the results showed good degradations trends, 
the results were used as input of a deep learning model. 

To extract and visualize features from the input, a stacked 
autoencoder was trained. The size of the autoencoder was 
configured to get the root mean squared errors between inputs 
and outputs less than 10-3. As a result, the trained autoencoder 
had double layers as shown in Figure 3. 

 
Figure 3. An architecture of a stacked autoencoder that was 
utilized to extract self-learned features from spectra data. 

 
The autoencoder had five neural layers that have 176, 45, 8, 
45, 176 neurons each. The autoencoder encodes a vector that 
has the size of 176 to 8 features, and then decodes the features 
to a 176 size vector again. To reason the characteristics of the 
8 features, all bearing datasets were encoded and decoded and 
changes in input were compared with the changes of each 
feature. Through the analysis, it was confirmed that the 
features extracted by the autoencoder represent a bundle of 
frequency bands that are highly correlated. 

To validate the fitness of the features for prognostics, the 
sensitivity analysis was conducted. Through this process, the 
most responsive features to predict the remaining useful life 
of bearings were the amplitude of high frequencies above 10 
kHz for both horizontal and vertical vibrations. Since natural 
frequencies of bearing’s components can generate 
frequencies above 2 kHz, the fitness of the features was 
verified. 

3.2. Remaining Work 

Among the three methods that were proposed in the 
framework, developing the method to extract logic from a 
deep learning model is in process. In particular, the approach 
to transform neural networks to decision trees needs to be 

developed. Due to the high complexity of a deep learning 
model, two problems need to be solved. 

Transforming the entire structure of a trained model is not 
feasible and even if it is possible, understanding the logic is 
challenging. Therefore, the model should be simplified 
without losing much information. 

Another issue is the limitation of sensitivity analysis on 
understanding the model. Since the result of the analysis 
gives only the expected responses of the model, inferred logic 
based on the result is not deterministic. In addition, the 
analysis has drawbacks in interpreting interactions between 
inputs. As the number of input increases, the computational 
power to interpret the interactions increases exponentially.  

4. CONCLUSION 

Interpretability of deep learning models is a big obstacle to 
embrace a deep learning-based health management system. 
To understand deep learning, this study presents a framework 
that includes human interactions while training a deep 
learning model. The framework will provide three methods 
that can be used to validate and improve a deep learning 
model. Among them, two methods were already developed 
and demonstrated on a developing prognostic model for 
rolling element bearings. However, the usage of the 
framework will not be limited to bearings because the 
methodologies provide general approaches to understand 
deep learning. 
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