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ABSTRACT 

This work investigates the morphological changes in the wear 

debris, generated during the different stages of gear wear. 

Wear debris are generated at the mating load-bearing tooth 

surfaces having relative motion. The number and size of 

collected wear debris provide useful information for the gear 

fault diagnosis.  

In the present work, both online and offline analyses of wear 

debris are carried out for gear fault diagnosis. In the online 

analysis, the oil from the gear sump is passed through online 

wear debris counter (to estimate the number of wear particles 

per minute) and particle size bin. Along with the online 

process, the oil samples are collected periodically, and wear 

debris particle images are captured using a scanning electron 

microscope (SEM). These images are subsequently 

processed to determine the parameters related to the shape, 

size and boundary features of the particles. The results of the 

modified texture in different stages of gear wear are reported. 

The average wear mass calculated as the actual area of the 

wear particles is combined with particle per minute is used as 

the stage’s classification.  

The combined online and offline study provides a better 

prediction of mild wear progression along with the 

information on the wear mechanisms at different stages of 

wear. The presence of different type of particles (ferrous and 

non-ferrous) points to degradation of specific components.  

 

KEYWORDS: Spur gear, wear debris, particle morphology, 

fractal analysis  

 

Figure 1. Schematic diagram showing wear debris 

generation interface and particle morphology 

1. INTRODUCTION 

Geared transmission system is widely used in many 

applications including aviation, wind turbine, industrial, 

civilian and military application (Liang, Zuo, & Feng, 2018). 

Over a period of time wear debris is generated at the relative 

moving surfaces of load sharing gear teeth (Davies, 1998) 

and hence the gear tooth surface degrades with time. The 

generated wear debris carry valuable information regarding 

the wear mechanism, damage progression and location in the 

gearboxes. The wear debris is classified based on quantity, 

quality, morphology, the color and material properties of 

wear debris (Khan & Starr, 2006; M. Kumar, Shankar 

Mukherjee, & Mohan Misra, 2013; Myshkin, Kwon, 

Grigoriev, Ahn, & Kong, 1997).  

Traditionally, the wear debris analysis is carried out offline 

after periodic gearbox oil sample collection. However, 

nowadays, a metallic wear debris sensor is used in an online 

mode to evaluate the progression of debris in the gearbox. 

The concentration of the metallic particles in oil correlates 

well with the severity of the fault (Dempsey & J., 2003; 

Dempsey, Lewicki, & Le, 2007; Kattelus, Miettinen, & 

Lehtovaara, 2018; P. Kumar, Hirani, & Agrawal, 2018; Yan, 

Youbai, Fang, & Zhigang, 1998). In the offline analysis of 

the sample, the ferrographic plates are prepared to perform 

scanning electron microscope (SEM) imaging, and different 
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wear particles are characterized under the SEM to assess the 

mode of formation (Muniyappa, Chandramohan, & 

Seethapathy, 2010; Scott, 2003). In some studies, visual 

inspection of the particles was carried out to detect the wear 

mechanism (Ebersbach, Peng, & Kessissoglou, 2006).   

The geometrical parameters of a wear particle such as area, 

perimeter, fiber ratio, etc. are used to characterize the wear 

particles. The surface texture based pattern is used to classify 

these particles (Laghari, 2003; Zhongxiao Peng, 2002; 

Stachowiak, Stachowiak, & Podsiadlo, 2008). Different 

fractal techniques are used to find the boundary texture of the 

wear debris (M. Kumar et al., 2013; Podsiadlo & Stachowiak, 

2000). (Iwai et al., 2010) studied the distribution of size and 

number of the wear particles in oil as a function of sliding 

distance.  

The particle is assumed as spherical to calculate the wear 

mass in the previous on-line particle progression studies 

(Dempsey, Lewicki, & Decker, 2004).  Many researchers 

only considered the number of wear debris particles (Kattelus 

et al., 2018). The type of wear particle is essential to track the 

source of particle generation.  

This article investigates the change in the morphological 

parameters of the wear debris generated during different 

stages of the gear tooth surface wear. The ferrous and non-

ferrous particles in metallic wear debris sensor have a 

different source of generation. The SEM images of the debris 

are processed to determine parameters such as area, 

perimeter, circularity, aspect ratio, roundness, mean value, 

standard deviation, skewness, kurtosis, boundary fractal 

using image analysis software. The average wear mass in 

each stage is calculated using an average area of the wear 

particles from the calculated parameters of the particle 

morphology. The evolution of these parameters with time and 

its correlation with different stages of the gear tooth surface 

wear is studied in this study. The combination of online and 

offline results can be very useful for gear condition 

monitoring.  

2. EXPERIMENTAL SETUP 

An experimental test rig, shown in Figure 2, is used to 

perform the experiments. The gearbox has a step-down ratio 

of 1.96 and is driven by a 30 kW DC motor. The motor is 

controlled by 3-phase 440 V / 75 A motor controller. The 

output of the gearbox is attached to water-cooled eddy current 

dynamometer (E-50) of torque capacity 200 Nm. The 

specification of the gears used for the test is given in Table 1.  

The test was conducted at a speed of 1200±50 RPM, load 

40±2 Nm, stable oil sump temperature of 40±2 ̊C, the 

surrounding temperature of 18±2 C̊ for 208 hours. Although 

the speed was maintained around the rated speed, there was 

some inherent speed fluctuation is due to controller output to 

the driver, the ripple in DC motor, error in the drive (gear 

drive), and the variation in the load at the output shaft. During 

the test, the continuous wear data (wear particle per minute 

and particle size distribution) of the gearbox were acquired. 

The gearbox operation was paused to collect oil samples from 

gearbox after every 40 hours. The interval of offline sampling 

is decided based on experiments performed and block on disc 

instrument with a sample of same properties start showing the 

stable friction value around 40 hours. The oil samples were 

collected at a stable operating temperature. For the 

replenishment of the bled oil sample, every time a 10 ml of 

fresh oil of the same properties is first brought to the 

temperature of the sump externally and then refilled to the 

sump. Since the gearbox sump capacity is 2000 ml, the 10 ml 

oil sample extracted for offline study is only 0.005% of the 

total sump oil amount. It is thus expected that this minuscule 

amount of the oil replacement would not bring any significant 

change in the oil properties, such as viscosity, etc and would 

not also alter the wear particle data. The samples were 

processed within 48 hours of the collection, and the wear 

debris were harvested from the lubricant sample using 

established methodology and then used for the SEM analysis. 

The experiment is terminated when the number of wear 

particles starts fluctuating more and increasing trend. 

For acquiring online wear debris data, a Kittiwake make 

metallic wear debris sensor (AS-19144-KW) was used. 

 

Table 1. Test gear dimension and specification 

Parameter  Pinion Gear 

Number of teeth 27 53 

Pitch diameter (mm) 54 106 

Base diameter (mm) 50.7 99.6 

Center distance (mm) 80 

Module (mm) 2 

Face width (mm) 20 

Pressure angle (°) 20 

Contact ratio 1.6 

Material properties 

Material EN 24 

Rockwell hardness number 

without hardening (HRC) 

20 

Rockwell hardness number 

hardening (HRC) 

58 

Poisson’s ratio 0.3 

Young modulus (GPa) 207 

Kinematic viscosity (@ 100°C, 

cSt) 

13.5-18.5 
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Figure 2. Experimental setup 

 

3. RESULT AND DISCUSSION 

3.1.  ONLINE STUDY 

The online particle monitoring is implemented using the wear 

debris sensor system connected to the gearbox oil-outlet. The 

oil debris sensor records a count of wear particles in bins with 

a range of particle size. The range of the bin sizes in microns 

is shown in Table 2. The wear debris data of 208 hours from 

the start of the experiment is collected. At the initial stage of 

run-in (0-40 hours), the wear rate is expectedly high with 

fluctuation in the range of 0-150 ppm (particles per minute) 

as noted from Figure 3.  The wear rate shows a decline (in 

stage 2) to a more or less stagnant level of 40 ppm with a 

slight spike during 70-80 hrs. It has been found that during 

the initial phase (till 40 hours of operation) the <50µm size 

ferrous and large size non-ferrous of size >250µm particles 

are found to be the dominating contributors to the wear 

debris. This stage is the run-in stage and is mainly responsible 

for the smoothening of the tooth surface.  In stage 3 the 

number of wear particles quickly jumps to a new level of 75 

ppm with some fluctuation. After 160 hours of operation, the 

wear particles show a sharp and sudden increase and 

thereafter shows an overall increasing trend with significant 

intermittent fluctuation. In both stages 3 and 4, the ferrous 

particle with <100µm size and non-ferrous particles with 

<250µm size were the dominating contributor.  

The total span shows distinct differences in the trend of wear 

rates. After a fluctuation in wear particles in the initial stage, 

it shows continuous decline towards the end of the first stage, 

in stages 2 and 3, the wear rate (in ppm) is nearly stagnant 

slope, but with a higher rate in stage 3. The wear rate stage 4 

shows an upward trend, most probably due to continuous 

surface damage of the gear tooth. 

The ferrous particles were measured and classified under 

three different size classes (0-50µm, 50-100µm and 100-

400µm) as mentioned in Table 2. Similarly, the non-ferrous 

particles were measured and classified (0-150µm, 150-

250µm and 250-400µm). The mean of the range of size of 

wear particles in the bin number represents the average 

particle size of the bin, as shown in the table. An hourly 

record of the number of particles measured by the sensor is 

used to find the average number of ferrous and non-ferrous 

wear particles in an hour in each stage and are shown in 

Figures 4 and 5. For example, for stage I, there are 40 

readings (one reading for each hour of operation) for the 40-

hour stage-I phase of the wear. The average number of 

particles for stage-I is the arithmetic mean of such 40 particle 

count readings. The corresponding standard deviation is also 

obtained for each phase. The error bar shown for each particle 

size in each stage represents the standard deviation. The 

distribution of the wear debris particles in these figures 

indicates the dominant particle size in each of the stages. It is 

clear from Figure 4 that the smaller particle size (average size 

25 micron) mainly dominates the wear debris in initial run-in 

condition (stage 1) with more than average 7000 particles per 

hour, while they are less than the average 1800 particles per 

hour in other stages. It is clear that as the wear progresses 

after the initial run-in period, the wear particles of 75-micron 

size start increasing monotonically, and they are found to be 

the true indicator of wear progression. In comparison, the 

smaller size particles, as well as bigger particles, do not show 

a significant and consistent increase. For the nonferrous 

particles, the trend is similar for medium size (75 micron) 

particles, with smaller size particles also showing a 

monotonic trend. 

The type of particle indicates the source of the particle 

generation. The ferrous particles are mainly from the gear 

tooth surface while the non-ferrous particles could be from 

the shaft seals. The seal is in continuous rub against the gear 

shaft.  

 

Bin 

Number 

Ferrous Particle Non-Ferrous Particle 

Bin 

Range 

(µm) 

Average 

particle 

size (µm) 

Bin 

Range 

(µm) 

Average 

particle 

size 

(µm) 

1 0-50 25 0-150 75 

2 50-100 75 150-250 200 

3 100-400 250 250-400 325 

 

Table 2. Wear debris particle size ranges 
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In Figure 6, the average wear particles and the average wear 

mass are plotted. Average wear mass is a function of the 

average area (From Table 3), the average number of particles 

per hour, average particle size, and density of the gear 

material used. A density value of 7840 kg/m3 is used to 

calculate the average wear mass in each stage.  The wear mass 

for the stages 1 to 4 are 0.2885 mg/hour, 0.0408 mg/hour, 

0.3923 mg/hour and 0.8679 mg/hour, respectively. The 

particles in stage 1 and stage 4 are nearly similar in the count, 

but the difference in wear mass is nearly 4 times, which could 

be due to the fact that smaller size (25µm) particles dominate 

stage 1, while in stage 4 the particles of larger size (75µm) 

dominate.  

 

Figure 3. Wear particle per minute obtained during the 0-

208 hours of operation 

 

Figure 4. Ferrous wear particles distribution 

 

Figure 5. Non-ferrous wear particles distribution 

 

Figure 6. Trend of average wear particles and wear mass 

across different stages 

3.2. OFFLINE STUDY 

In the offline study, the oil samples were collected 

periodically; after every 40 hours of operation. The wear 

debris, harvested from the oil sample, were analyzed under 

the Scanning Electron Microscope (SEM). The SEM images 

were processed in an image processing tool (ImageJ) to 

extract the morphological parameters (Figure 7). The raster 

cell size chosen is 5 m2 for stages 1 and 2, while due to the 

increased wear particle sizes in stages 3 and 4, it was 

increased to 20 m2. Through a separate study conducted, it 

is found that the change in the raster cell size does not 

significantly influence the values of the parameters 

computed. The images were processed to extract various 

morphological feature parameters of the wear debris 

particles. These parameters are as follows: 

Aspect ratio: it is a measure of the elongation of a boundary 

profile and is quantified by the ratio of length and breadth of 

the particle(Z. Peng & Kirk, 1998). 
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Figure 7.  Different type of particle obtained for duration 0-208 hours (a) SEM image of particles (b) shape parameter 

evaluation by fractal analysis (c) surface plot and (d) profile plot 

 

Roundness: the roundness is given by (4(projected area)/ π 

(length)2 ) and is sensitive to elongation (Z. Peng & Kirk, 

1998). It is obvious that as the particle deviates from the 

round shape the roundness reduces from an ideal value of 1 

(for circle) to a theoretical lowest value of 0. 

Solidity (area/convex area) imply the ruggedness of a 

boundary profile. The solidity is 1 for the particle that has no 

concavities and it is less for particles with indentations (Kirk, 

Panzera, Anamalay, & Xu, 1995). 

Standard deviation (SD = √∑ 𝛿𝑖
2 (𝑛 − 1)⁄𝑛

𝑖=1  )is the 

deviation (δ) of the minimum circle fit when moving along 

the coastline of the particle. The other moment parameters are 

skewness ( ∑ 𝛿𝑖
3 𝑛𝑆𝐷3⁄𝑛

𝑖=1 ), Kurtosis ( ∑ 𝛿𝑖
4 𝑛𝑆𝐷4⁄𝑛

𝑖=1 )   

(Yuan, Chin, Hua, Dong, & Wang, 2016). 

Boundary fractal is a numerical parameter used for 

characterizing of the boundary of wear particle by enclosing 

the wear particle by a polygon of constant sides (Podsiadlo & 

Stachowiak, 1998).  

To analyze particle morphology, the SEM images, and the 

surface plot and the profile plot for particles in each stage 

were obtained and are shown in Figure 7. The surface plots 

are obtained using the three-dimensional fast Fourier 

transform (FFT). To obtain the FFT 3D plots, as shown in 

Figure 7 (c), the surface is segmented in small data points, 

and points were transformed using FFT, row by row and 

stacked together to obtain 3 D transformed plot. The vertical 

line shows the grey level intensity of the pixel at that point. 

The profile plot is 1D FFT plot along the line connecting two 

points on the wear particle contour. The height (y-axis) shows  

 

(a)

(b)

(c)

(d)

Stage 1 Stage 2 Stage 3 Stage 4

10 µm 10 µm 20 µm 20 µm

Grey level 

(0-255)

Grey level 

(0-255)

Grey level 

(0-255)

Grey level 

(0-255)
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Table 3. The mean and standard deviation values of the particle morphological parameters for particles in each stage of gear 

life 

 

the grey level spectral intensity. The surface plot of the stage 

1 particle is shown more laminar morphology on the surface 

and more irregularities on the contour. The spectral 

intensities of the laminar wear particles are evenly 

distributed. The profile plot in Figure 7 (d) corresponds to the 

surface plot in Figure 7 (c) of stage 1 displays the same evenly 

distributed spectral densities with the nearly same height. The 

particles in stages 2 and 3 exhibits a surface that has rugged 

topography, and the surface is no longer laminar. The spectral 

densities distribution is no longer evenly distributed but 

aligned in one direction for surface plot and profile plot. In 

stage 4, the surface is very rough but less chaotic at 

boundaries. The spectral density distribution is non-uniform 

distribution and non-even directional alignment for both 

surface and profile plots. The particle obtained in stage 4 

exhibits an abrasive particle characteristic. 

The surface plot for different orientation of the wear particles 

are given in APPENDIX -I. The surface plot, profile plot, 

along with the statistical parameters, shows that the existence 

of different wear mechanism. At stage 1 – cutting was 

dominating and resulted in a smooth surface (Figure 7). The 

spiral cutting particles (as shown in Figure 7 (a)) are obtained 

in stage 1 confirm the dominance of cutting wear mechanism.  

The wear particles generated at stage 1, were trapped at the 

interface, resulting in the three-body abrasion at stage 2 and 

3. The particle images in stages 2 and 3 show the 

modification in the wear debris morphology.  

In Table 3, the different particle morphological parameters 

are listed. The S1P (Stage 1- particle), S2P (Stage 2- particle), 

S3P (Stage 3- particle), and S4P (Stage 4- particle) are the 

particles obtained during the different stages corresponding 

to stage 1, stage 2, stage 3, and stage 4 respectively. From the 

Table 3, it can be observed that particle obtained in stage 1 

are cutting particle and are of fiber structure with low 

circularity, roundness, solidity and high values of aspect 

ratio, mean, standard deviation, skewness, kurtosis and 

fractal dimension which shows the chaotic boundary. The 

particles get modified with the time and show that in stage 4 

particles become more in circular shape with low values of 

aspect ratio, mean, standard deviation, skewness, kurtosis 

and fractal dimension which shows the chaotic boundary. 

It is noticeable from the above study that a particle size of 

less than 100µm (Davies, 1998; Kattelus et al., 2018) is 

dominating contributor to the wear debris and indicates the 

existence of mild wear. It is noticeable that the particles 

Property 
S1P 

(mean) 

S1P 

(standard 

deviation) 

S2P 

(mean) 

S2P 

(standard 

deviation) 

S3P 

(mean) 

S3P 

(standard 

deviation) 

S4P 

(mean) 

S4P 

(standard 

deviation) 

Area (𝝁𝒎𝟐) 99.4 2.15 69.5 1.89 158.83 3.38 153 2.93 

Perimeter (𝝁𝒎) 86.86 3.76 97.3 0.92 189.27 3.89 171.36 1.29 

Major axis (𝝁𝒎) 27.4 1.48 11.3 0.16 15.3 1.02 14.8 2.02 

Minor axis (𝝁𝒎) 4.63 0.67 7.82 0.09 12.74 1.20 13.2 0.44 

Circularity 0.05 0.007 0.61 0.03 0.778 0.03 0.75 0.05 

Aspect ratio 5.91 0.23 1.4 0.02 1.199 0.02 1.12 0.013 

Roundness 0.16 0.004 0.69 0.004 0.827 0.016 0.89 0.017 

Solidity 0.17 0.016 0.80 0.02 0.9354 0.019 0.90 0.05 

Mean 188 2.41 160 1.64 127.87 1.50 163 1.92 

Standard deviation 56.5 2.06 34.4 0.42 39.02 1.13 41 2.47 

Skewness 9.03 0.77 4.8 0.30 1.754 0.02 1.04 0.02 

Kurtosis 14.9 0.21 6.25 0.05 5.204 0.167 9.96 0.65 

Boundary fractal 6.8 0.33 1.24 0.02 1.462 0.196 1.6 0.25 
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morphological modification in parallel with on-line 

monitoring is a promising way to follow the progression of 

mild wear. The on-line particle progression provides the 

information regarding the stage changes in the damage of the 

gear along with average wear mass (Figure 6). The offline 

study of the particle morphological modification gives 

information about the change in the surface profile of the 

wear particle and existing wear mechanism.   

4. CONCLUSION 

The online and offline studies of the wear debris provide a 

better prediction of the progression and the change in wear 

mechanisms at a different stage. The presence of the non-

ferrous particle in the system indicates degradation of other 

components along with the gear. The result shows that the 

concentration of wear debris particles in oil is well correlated 

to the wear mass. 

• The accumulation and the time of occurrence of the 

wear particles are traced out with the help of an 

online particle counter.  

• The presence of non-ferrous particles may be due to 

seal wear (continuously rubbing against the gear 

rotor) or bearing degradation.  

• The progressive damage of the gear tooth surface is 

confirmed by the increase in the number of wear 

particles and the average wear mass. The particle of 

an average size of 75 micron are found to be the 

right candidate to track the trend of wear of gear 

tooth surface. 

• In the initial stage, the particles are in fiber shape 

due to cutting action. In stage 2 and 3, the particles 

are semi-laminar due to the three-body abrasion. In 

stage 4, the particles are no longer laminar as a result 

of two-body abrasion. 

• SEM images of particles conclude that profile of the 

wear particles gets modified over time, and the 

surface gets rougher.   

The initial work on a combination of online and offline wear 

debris classification presented in this work can aid and 

complement the other methods of gear condition monitoring. 

In future studies, these results can be further combined with 

other sensors (vibration, and acoustic) data better to predict 

the condition of the gearbox under mild wear progression.  
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APPENDIX-I 

The surface plot of the particles at a different orientation. 

 

 

 

Stage 1 Stage 2 Stage 3 Stage 4

Grey level 

(0-255)

Grey level 

(0-255)

Grey level 

(0-255)

Grey level 

(0-255)

Grey level 

(0-255)

Grey level 

(0-255)
Grey level 

(0-255)

Grey level 

(0-255)
Grey level 

(0-255)

Grey level 

(0-255)

Grey level 

(0-255)
Grey level 

(0-255)

Grey level 

(0-255)

Grey level 

(0-255)

Grey level 

(0-255)
Grey level 

(0-255)


