
Machine Learning Interpretability Techniques for Outage
Prediction: A Comparative Study

Anahid Jalali1, Alexander Schindler2, Bernhard Haslhofer3, Andreas Rauber4

1,2, 3 Austrian Institute of Technology, Giefinggasse 4, Vienna, 1210, Austria
name.lastname@ait.ac.at

4 Vienna University of Technology, Karlsplatz 13, Vienna, 1040, Austria
rauber@ifs.tuwien.ac.at

ABSTRACT

Interpretable machine learning has recently attracted a lot of
interest in the community. Currently, it mainly focuses on
models trained on non-time series data. LIME and SHAP
are well-known examples and provide visual-explanations of
feature contributions to model decisions on an instance basis.
Other post-hoc approaches, such as attribute-wise interpreta-
tions, also focus on tabular data only. Little research has been
done so far on the interpretability of predictive models trained
on time series data. Therefore, this work focuses on explain-
ing decisions made by black-box models such as Deep Neu-
ral Networks trained on sensor data. In this paper, we present
the results of a qualitative study, in which we systematically
compare the types of explanations and the properties (e.g.,
method, computational complexity) of existing interpretabil-
ity approaches for models trained on the PHM08-CMAPSS
dataset. We compare shallow models such as regression trees
(with limited depth) and black-box models such as Long-
Short Term Memories (LSTMs) and Support Vector Regres-
sion (SVR). We train models on processed sensor data and
explain their output using LIME, SHAP, and attribute-wise
methods. Throughout our experiments, we point out the ad-
vantages and disadvantages of using these approaches for in-
terpreting models trained on time series data. Our investiga-
tion results can serve as a guideline for selecting a suitable ex-
plainability method for black-box predictive models trained
on time-series data.

1. INTRODUCTION

The opacity of machine learning models is increasingly seen
as a problem in application areas, where transparency and ac-
countability play an essential role. Examples of such applica-
tion areas are health care systems, financial services, and in-
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dustrial applications (Varshney & Alemzadeh, 2017). Due to
missing model transparency, it is often impossible to explain
how models derived their predictions from input data and how
subsequent decisions were made. However, this is a funda-
mental requirement in application domains that rely on trans-
parent and reproducible predictions and decision-making.

Explainable Artificial Intelligence (XAI) denotes ongoing re-
search activities that concentrate on finding explainability ap-
proaches for such black-box models. At the moment, we
can distinguish two different branches of studies: the first
focuses on providing interpretable models through examin-
ing the prediction results and internal learning processes of
(model-specific) algorithms. The other focuses on prediction
interpretation and justification and produces (model-agnostic)
explanations of prediction outcomes (Biran & Cotton, 2017).
One approach to ensure the interpretability of a model’s deci-
sions is to use interpretable models such as decision trees, lin-
ear or logistic regression, where through meaningful features
of these models, explanations can be extracted. However,
models such as Deep Neural Networks (DNN), also known as
Artificial Neural Networks (ANNs), have proven to be more
robust at modeling complex data, such as multimedia anal-
ysis. Explanation methods used for such models are often
model-specific, and most of them are focused on Computer
vision (Carvalho, Pereira, & Cardoso, 2019). Recent stud-
ies focused on the interpretation of models trained on time-
series data derived from text (Ribeiro, Singh, & Guestrin,
2016; Lundberg & Lee, 2016). However, we are not aware of
any studies that examined the explanations provided by these
interpretability approaches for black-box algorithms trained
on time series sensor data in the industrial application con-
text. Therefore, our work’s focus is to investigate the applica-
bility of existing interpretability techniques on the PHM08-
CMAPSS dataset, which represents a well-known and widely
studied Predictive Maintenance (PdM) use case. To point
out their advantages and disadvantages, we apply these meth-
ods on Support Vector Regression (SVR) and Recurrent Neu-
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ral Networks (RNNs) architectures such as Long-Short Term
Memories (LSTMs) and Gated Recurrent Networks (GRUs)
trained on sensor data. Furthermore, we use Bayesian linear
regression and a decision tree to compare the output of inter-
pretability techniques with the feature importance and coeffi-
cients of these interpretable models.

Our study aims to investigate how well-known interpretable
approaches, such as LIME, SHAP, attribute-wise, and sur-
rogate models, can be used to explain industrial time series
models’ decisions. Our contribution is a systematic and qual-
itative analysis of these interpretability approaches on black-
box models. We will commence by providing further back-
ground on PdM and machine learning interpretability in sec-
tion 2. Next, in section 3, we introduce the PHM08-CMAPSS
dataset, results from our exploratory analysis, applied data
preprocessing steps, as well as our methodology to compare
the interpretability techniques. In section 4, we demonstrate
the experimental results of our models and cover the analy-
sis of explanations of the predictions produced by these tech-
niques. Finally, we discuss the advantages and disadvantages
of these approaches for industrial time series and their effec-
tiveness.

2. BACKGROUND

Machine learning is becoming increasingly popular in indus-
trial research. However, its opaqueness challenges the de-
ployment of such systems in practice. Therefore, industry
professionals are cautious in deploying such technologies.
Yet, they are still tackling to optimize their maintenance plans,
reduce the costs of unplanned breakdowns, and unnecessary
maintenance actions (W. Zhang, Yang, & Wang, 2019).

2.1. Predictive models for outage prediction

Remaining Useful Life (RUL) and Time to Failure (TTF) es-
timation are essential tasks of Predictive Maintenance. Ma-
chine Learning has proven robust in these tasks;
(Mutunga, Kimotho, & Muchiri, 2019) uses an ensemble of
machine learning algorithms to estimate the remaining num-
ber of cycles to breakdown on the C-MAPSS dataset. (Guo,
Li, Jia, Lei, & Lin, 2017) has developed a Recurrent Neu-
ral Network to produce a health indicator for RUL estimation
of bearings. (Ren, Cui, Sun, & Cheng, 2017) uses a fully
connected neural network to predict the RUL of a group of
bearings, using a simulated dataset generated by AS2M de-
partment of FEMTO-ST Institute. (Y. Zhang, Xiong, He, &
Pecht, 2018) uses LSTM architecture to estimate the RUL
of lithium-ion batteries. However, there have been very few
studies on interpreting these models in this domain (Gade,
Geyik, Kenthapadi, Mithal, & Taly, 2019). An example of
such studies is the work of (Kraus & Feuerriegel, 2019), where
they interpreted an LSTM model trained on the C-MAPSS
dataset by variational Bayesian inferences. Therefore, we

have provided a comparative study on interpretable methods
and applied them to explain the decision of black-box models
trained on sensor data.

2.2. Machine learning model interpretability

Most ML models, such as ensemble models, random for-
est, SVM, and ANNs, have a complex inner structure and
act as a black box. Therefore, ML-experts cannot provide
explanations of the decisions made by these models. Even
though ML techniques have proven their robustness in many
different domains, the transparency of their decisions is still
missing. Questions of trusting the model vs. the adequate-
ness of its performance arise; can we trust a robust model
without knowing why it is robust. Or, more critically, is the
model truly robust? An example of such models was pointed
out by Ribeiro, where he addressed the Husky or Wolf prob-
lem (Ribeiro et al., 2016). The classifier proved robust, but
when investigated further, it was found that the model never
learned the features of either wolves or huskies and instead
focused on the background. Whenever the background was
white (snow), the image was more likely to be predicted as
a wolf. ML-Interpretability (also known as Explainable Arti-
ficial Intelligence or XAI) focuses on approaches to provide
more transparency for these opaque algorithms. The expla-
nations of these models can be grouped into Global or Local
explanations.

• Global explanations justify all outputs of a model. Ex-
ample of such approaches are attribute-wise approaches
such as Partial Dependence Plots (PDP) (Friedman, 2001),
Individual Conditional Expectation (ICE)
(Goldstein, Kapelner, Bleich, & Pitkin, 2015) and Accu-
mulated Local Effects (ALE) (Apley, 2016).

• Local explainability provides justifications for an instance
and has local fidelity. Examples of such approaches are
LIME(Ribeiro et al., 2016) and SHAP(Lundberg & Lee,
2016) (Given a trained model and the full test set, SHAP
can also provide global explanations).

Interpretable approaches can further be structured into pre-
model (before training), in-model or intrinsic (while train-
ing), and post-model or post-hoc (trained model). Techniques
used for model interpretation often focus on explaining the
model by looking at the contribution of a feature (or set of
features) on a model’s output. Besides attribute-wise tech-
niques, the surrogate model is also a popular choice, where a
transparent model such as linear regression or a decision tree
approximates the decision boundary of a complex model. For
a thorough reading, we recommend the survey (Carvalho et
al., 2019).
These approaches enable us to answer the questions: why was
a specific prediction chosen? when does the model fail? and
when does the model succeed?.
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2.3. Existing methods and techniques

Attribute-wise techniques, as their name implies, provide a
feature summary and their contributions to predictions. For
example, by calculating Partial Dependence of a feature on
the predictions, we can observe the feature’s effect on the av-
erage predictions by changing values of all attributes at each
observation while freezing the value of targeted features for
that observation. However, this approach does not take the
linear dependency of the target feature with other features
into account.
A similar approach to PDP is ALE, where the interaction be-
tween the features is taken into account. Using ALE plots to
interpret a model’s prediction, we observe the changes of the
predictions within an interval where the values of other fea-
tures change around the value of the target feature.
Another popular technique to interpret a model’s outputs is
to estimate the predictions made by a black-box model us-
ing a shallow model. A recently proposed method, Local In-
terpretable Model-Agnostic Explanations (LIME), combines
both attribute-wise and surrogate models to explain the model’s
predictions locally. LIME is a post-hoc approach, proposed
by (Ribeiro et al., 2016) and explains the trained model’s de-
cision for an individual instance. Initially, they only focused
on classifiers for tabular and image data. Later on, they ex-
tended their approaches for models accepting time series as
input, such as Recurrent Neural Networks. The goal of this
approach is to identify an interpretable model g that locally
explains the decision of the complex model f . LIME applies
a trade-off between local fidelity and interpretability of the set
of potentially interpretable models and chooses the one with
minimum complexity as well as minimum unfaithfulness of
g. For this purpose, they follow these consecutive steps;

1. Perturb the training sample and create a new dataset.

2. Measure the distance between the new samples and orig-
inal samples.

3. Predict the new samples using the complex model f .

4. Select the feature set that is describing the predictions of
the complex model best.

5. Train the interpretable model g on the permuted data on
the selected feature set and use similarity scores as its
weights.

6. Weights of the interpretable model g interpret the com-
plex model f .

Shapley Additive explanations (Lundberg & Lee, 2016), also
known as SHAP, use Shapley values, a game theory tech-
nique, to provide its explanations. A Shapley value is the
average marginal contribution of a feature value over all pos-
sible combinations with other features (Molnar, 2019). SHAP
uses these values to measure the effect of an individual fea-
ture on an individual prediction. It permutes overall options
of removing the feature and the effect of it on the prediction,

as well as its contribution. SHAP has multiple explainers.
Examples of such explainers are;

• Kernel Explainer - very similar to LIME, where a weighted
linear regression calculates the feature contributions.

• Tree Explainer - interprets ensemble tree models e.g. XG-
Boost.

• Deep Explainer - an enhanced version of DeepLift
(Shrikumar, Greenside, & Kundaje, 2017) to explain deep
neural networks (but does not support Tensorflow 2.0).

• Gradient Explainer - motivated by the integrated gradi-
ents method (Sundararajan, Taly, & Yan, 2017), inter-
prets the models by calculating the expected gradients.

In section 4, we examine the performance and applicability
of these approaches on our black box models to explain the
RUL prediction on the PHM08 C-MAPSS dataset. Through-
out our examination, we point out the advantages and disad-
vantages of these techniques. We compare their explanations
to each other to provide a correlation between their explana-
tions and the model outputs. We also provide extra informa-
tion on these approaches in the following table 1. In column
”Computational Complexity” N is the number of instances,
F is the number of features and τ is a constant referring to
time complexity of a decision made by complex model f .
Note that LIME computational complexity is in addition to
its sample perturbation.

3. DATA AND METHODOLOGY

We first apply data pre-processing steps such as noise han-
dling and normalization on the PHM08 C-MAPSS dataset.
Afterward, we select a set of models, both shallow and black-
box models such as SVR and ANNs, to estimate the engine’s
remaining useful life. To evaluate our model’s performance,
we have chosen the RMSE (Root Mean Squared Error). Sub-
sequently, we apply state of the art interpretability approaches
such as LIME, SHAP, and attribute-wise explanations of PDP,
ALE plots.

3.1. Dataset

C-MAPSS aircraft engine data is a benchmark dataset that
contains run-to-failure data, including labeled breakdowns.
It represents 218 engines of a similar type, which all start
from a healthy state. Faults are injected throughout the en-
tire engine’s life span until it goes to a breakdown state. The
maximum and the minimum number of cycles to failure in
the training set are 357 and 128, respectively, with a mean of
210. The engine data’s attributes consist of three operational
settings, vibration data collected from vibration sensors, and
two binary attributes. We have named the columns as fol-
lows: the first two columns represent the engine number and
cycles, columns 3 to 5 represent the operational settings and
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Table 1. A General Comparison of Interpretability Approaches

Multiple Explanatory Computational Post
Method License Output Features Approach Scope Complexity -Hoc

per Plot
Feature Contribution O(Nτ

LIME BSD 2-Clause Bar-plot True & Local +F 3 True
Surrogate Model +F 2N)

Feature Contribution Local
SHAP MIT Scatter-Plot True with & O(2F ) True

SHapley values Global
sk-learn Feature Contribution

PDP 3-Clause Line-plot False via calculating prediction over Global O(2NF ) True
BSD marginal distribution

ALEPython Feature Contribution
ALE Apache License Line-plot False via calculating prediction over Global O(2NF ) True

2.0 interval conditional distribution

from column six, and every attribute is named as s1 to s21
(sensor 1, sensor two and so on).

3.2. Exploratory analysis

As mentioned in the provided documentation for this dataset,
the operational settings have a direct effect on the engine’s
health degradation. Analyzing these settings results in 6 groups
of values caused by six different operational modes in the data
(Peel, 2008; Wang, Yu, Siegel, & Lee, 2008). After scaling
the data into a range between 0 and 1 within each operational
mode, we have noticed the degradation trend in the given sta-
tionary time series. Figure 1 illustrates the differences be-
tween the actual signal and the noise-removed scaled one.
Further analyzing the trends, we notice a sudden curve after a
specific number of cycles is passed. Visibility of these trends
and their strong correlations with target variables make this
dataset appropriate for our study comparing interpretability
models applied to the algorithms trained on this data. In this
way, we have a sense of when and why a breakdown is ap-
proaching. We see that these curves often occur after roughly
120 cycles, and we use this information as the knee point to
build our second target value as the remaining useful life of
the machine. Scaled raw data already demonstrates the degra-
dation trend over time. Therefore, we apply no further signal
processing on the data.

3.3. Data pre-processing

We use k-means clustering to label those six operational clus-
ters. Next, we min-max scale the vibration data (no columns
with binary value or operational settings) within their corre-
sponding units and labeled operational modes. Furthermore,
we have used a Gaussian filter to remove the noise in the data
1.
To create the target variable, we have experimented with two
different target values;

Figure 1. Illustrating the visible trend in the data after pre-
processing; Sub-figure (a) demonstrates the actual raw sensor
data. In sub-figure (b) we have scaled the signal within its unit
and labeled operational cluster. Sub-figure (c) is the scaled
signal after passing it through a Gaussian filter (σ = 2) for
noise removal.

1. Target value is a descending line derived from the num-
ber of cycles, creating a zig-zag of the number of cycles
to failure. This target value was used and motivated by
(Peel, 2008).

2. Target value is a piece-wise linear function of the afore-
mentioned target. It uses 120 cycles as maximum life ex-
pectancy, achieved during our exploratory analysis, and
motivated by the winner of the challenge (Heimes, 2008).
These target values are depicted in figure 2. The argu-
ment for this shape of the target value is to demonstrate
the health state of the equipment, where over a period of
time, it remains healthy and then starts to degrade lin-
early.
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Figure 2. Comparison of two target variables; Linearly de-
scending number of cycles to failure are depicted in sub-
figure (a) and the piece wise estimation of this target is de-
picted in sub-figure (b).

3.4. Methodology

In subsection 2.3, we provide an overview of interpretability
approaches and their differences. We do this by investigat-
ing their output types, the content of the plot and supported
feature dimension, e.g., plotting the best features describing
the black-box model over target value, explanation techniques
(whether it is feature contribution or surrogate model or both),
the scale of the approach (whether it explains all of the deci-
sions made by the model or per instance), as well as their time
complexity. This general comparison can be seen in table 1.
Our results comparing these techniques are provided in sec-
tion 4.2, where we explain how we derive an explanation
from the outputs of interpretability methods, the advantages
and disadvantages of their explanations, and extra informa-
tion can achieve from their outputs. Furthermore, we need to
adapt our models to be able to use some of these approaches.
Interpretable approaches such as PDP and ALE do not sup-
port an array as an input. Therefore, we modify our SVR,
Bayesian linear regression, and decision tree by accepting one
descriptive value of a time-window. The descriptive value of
time-windows is the mean of the window. This is accept-
able for this dataset as the fluctuations in processed data do
not affect the visible trend of the data. Moreover, denoising
the signal removes the anomalies, thereby allowing for the
replacement of the mean with the median, as it no longer sig-
nificantly changes the data.

4. EXPERIMENTAL RESULTS

We divide our experiments into two sections: first, where
the target value is linearly descending (motivated by (Peel,
2008)) and second, where the target value is a representation
of the equipment’s remaining useful life and is estimated by
a piece-wise linear function (motivated by (Heimes, 2008)).
We use a Bayesian linear model as well as a decision tree with
limited depth for our shallow models. Our complex (black-

box) models are neural networks (LSTMs, GRUs) and Sup-
port Vector Regressors with a nonlinear kernel (Radial Ba-
sis Function). We applied multiple experiments on different
combinations of attributes and chose the set of combinations,
which are only 13 vibration signals s2, s3, s4, s7, s8, s9, s11,
s12, s13, s14, s15, s17, s20 from 21 inputs and 3 operational
settings. We chose this set because of their strong correlation
with the target variable. The removed features are two binary
features and operational settings. Our study focuses on in-
terpreting the decisions made by the predictive models, and
therefore, we omit those two binary features to focus only on
the vibration data. Since we use the operational settings in
scaling the features, we removed these settings as well. Fur-
thermore, the length of our time window is 30 observations
over time.

4.1. Prediction results

In this section, we demonstrate the prediction results of our
trained models. The column ”Mean of Series” refers to the
mean of each time window. We train our models on 70%
of the dataset and evaluate the remaining 30%. This eval-
uation set was chosen at the beginning (using group shuffle
split function with the randomness value set to 42 from the
scikit-learn library) and always remained the same through-
out the experiments. For our training process, we use a four-
fold cross-validation technique to make sure the model is not
overfitting on a portion of the data, and the evaluation results
are reliable. For the cross-fold validation, at each fold, we use
85% of training data, and the remaining 15% of this set was
for evaluation within the folds. The following tables demon-
strate results on the out of sample dataset. We do not carry
our analysis on the test set for the apparent reason that the
R2F data is not provided.

Table 2. Linearly descending number of cycles to failure as
target value

RMSE
Model Series Mean of series
LSTM 32.63 -
GRU 33.16 -
SVR 29.69 35.28
Lin-Bayesian 32.67 36.61
Tree 33.23 46.85

Table 3. Piece-wise linear estimation of number of cycles to
failure as target value

RMSE
Model Series Mean of series
LSTM 15.17 -
GRU 14.11 -
SVR 13.29 13.88
Lin-Bayesian 13.56 14.67
Tree 17.78 19.44
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For both experiments, we see that SVR achieved the lowest
RMSE and Decision Tree, the highest RMSE. Linear Bayesian
and GRUs also achieved RMSE close to SVR. We further in-
vestigate the predictions of trained models by looking at the
data from engines with successful predictions (lower RMSE)
and failed predictions. Looking at the predictions, we notice
almost all the engines have more accurate predictions close to
the breakdown (last quarter of the engine’s life).
For the linear target variable, the higher error in prediction
often occurs in the first half of the engine’s life span. This is
due to the model’s inability to estimate the maximum number
of runs when the machine is still in a healthy state. This max-
imum number is often estimated by the average maximum
number of cycles of all the engines in the train data.
Changing the target variable from linear to piece-wise linear
reduced the RMSE (second phase of the experiments). Failed
cases in piece-wise linear are the same as a linear target, due
to the change in the first half of the engine’s life. Often en-
gines run ”stable” over longer intervals at hardly changing
sensor values indicating no significant degradation of the en-
gine. That leads to the model mistakenly predicting higher
remaining life cycles for that engine than the actual life cy-
cles remaining. This shows the difficulty of estimating the
remaining number of cycles to failure at the beginning of the
equipment’s healthy life.
We compare the failed predictions of LSTMs (and GRUs)
with SVR (as this model achieved the lowest error rate). SVR
had the same failures (same engines with high RMSE) as
LSTMs and GRUs. Figures 3 and 4 illustrate failed predic-
tions of LSTMs and SVR on both target variables. Figures 5
and 6, illustrate the successful predictions for both target vari-
ables. Our analysis and comparison of failed and successful
cases among the trained model showed that they mostly fail
on the same engines and successfully predict similar engines.

Figure 3. Comparison of failed predictions on linear target
variable and piece-wise linear target; Sub-figure (a) demon-
strates the actual raw sensor data, actual target values and pre-
dictions. In sub-figure (b) another unit’s data with piece-wise
linear target variables and the corresponding prediction pro-
duced by LSTMs.

Figure 4. Comparison of failed predictions on linear target
variables and piece-wise linear target; Sub-figure (a) demon-
strates the actual raw sensor data, actual target values and
predictions. In sub-figure (b) another unit’s data with piece
wise linear target variable and the corresponding prediction
produced by SVR.

Figure 5. Comparison of successful predictions on linear
target variable and piece-wise linear target; Sub-figure (a)
demonstrates the actual raw sensor data, actual target values
and predictions. In sub-figure (b) another unit’s data with
piece wise linear target variable and the corresponding pre-
diction produced by SV.

4.2. Interpretability results

In this section, we analyze the interpretability techniques and
derive explanations on the model’s outputs to justify its pre-
dictions. The first analysis we provide in prediction results
help us to understand and check the validity of interpretabil-
ity approaches. To compare their outputs, we extract the fea-
ture coefficients from the Bayesian linear regression model,
as well as a decision tree, where they both point to features
s12, s9 and s7 with positive coefficients and features s15,
s11, s17, s3, s2, s4 with negative coefficients.

4.2.1. LIME

We use linear regression for LIME’s approximation model to
explain our trained LSTMs and GRUs as well as SVR. We
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Figure 6. Comparison of successful predictions on linear
target variable and piece-wise linear target; Sub-figure (a)
demonstrates the actual raw sensor data, actual target values
and predictions. In sub-figure (b) another unit’s data with
piece wise linear target variable and the corresponding pre-
diction produced by SVR.

explain the train set instances from the first quarter of the ma-
chine’s life, third quarter and breakdown point.
Analyzing LIME’s output for all samples in different quar-
ters of the engine’s life span, we notice that the model has
a strong focus on the behavior of 3 sensors. LIME approxi-
mates a range for different timesteps and checks if the sensor
value of the individual sample violates the range.
For sensors with a positive correlation with the target vari-
able, the higher value of the sensor results in higher predic-
tions of the number of Cycles to Failure (CTF) and for lower
CTF model predicts the cycles as they linearly degrade. This
means based on LIME’s approximation, s12 and s7 are best
describing both LSTMs and GRUs.
For instance, at the beginning of the timesteps, min-max scaled
s12 should have a range smaller than 0.39 and towards the
end of the timesteps should be smaller than 0.37 for the model
to predict a lower number of cycles to breakdown. Close to
the breakdown, this value was changed to 0.70 and 0.72, re-
spectively. The same is observed for GRUs, and SVRs.
Contrary to LSTMs and GRUs, where approximations mostly
were weighted by positively correlated features, SVR is ap-
proximated by negatively correlated features with the target
value. The chosen range for s11 and 15 (which are highly
correlated) approaching breakdown was often a sensor value
larger than 0.57 and 0.59, respectively. We further apply
LIME for SVR and noticed that LIME’s approximation gives
more weight to sensors that are negatively correlated with the
target variable and the positively correlated sensor s12 has
many fewer coefficients than s15 and s11.
Figure 7 is a crop of LIME prediction at the beginning of the
engine’s life, and as it approaches the breakdown point, ex-
plaining LSTMs predictions.

We explain the predictions of LSTMs and GRUs by analyzing
LIME’s output that sudden jumps in the most influential fea-

tures cause the failed prediction. More importantly, we notice
that LSTMs, GRUs, and SVRs are modeling the noise in the
signals as well, and therefore they fail at predicting correct
CTF.

4.2.2. SHAP

We first apply SHAP on SVR to explain its prediction. For
this purpose, we use the kernel explainer and locally explain
the instance of the engine with the lowest RMSE (success-
ful prediction) for all 30 instances of it. Local explanation
plots are provided from SHAP’s force plot and are presented
in figure 8. This plot shows that for instance 1, increasing the
value of s11 with each of its timesteps is positively affect-
ing the model’s prediction (raising the number of CTF) and
30 instances later, the decreasing value of s13 is the reason
of lowering the number of CTF. Moving closer to the break-
down, we see that SHAP values for s12 and s11 have higher
values and push the CTF value lower than their previous time
steps.

We further use SHAP’s summary plot to have an overview of
all the calculated SHAP values for all the features. Figure 9
is the output of SHAP’s summary plot, where the x-axis is
the predicted target value (CTF) and each line of the y-axis
is the calculated SHAP value for each feature. Each point
of this plot is a SHAP value for a feature and an instance.
The color blue represents the lower SHAP values, and color
red represents the higher SHAP values. The dense area of
the plots shows the distribution of the SHAP values for that
feature. In this figure, we see that a lower value of s15, s11
have a high influence on predictions with a higher value of
CTF. We also see that four sensors s15, s11, s12, and s3 are
describing the SVR model throughout the CTF predictions
and the other features are only considered in the mid-life of
the engine.

We also used SHAP’s dependence plot to visualize (see figure
10) the dependence of the feature values (x-axis) over SHAP
values (y-axis). This plot is an alternative to a partial depen-
dence plot. We see that sensors s15, s11, s3 and s2 have the
most linear dependency with their SHAP values. We further
see that this plot is very similar to the output produced by the
ALE plot.

As kernel explainer of SHAP does not support LSTMs and
GRUs (models trained on 3-dimensional data) and Deep Ex-
plainer is also not supporting RNN models, we could not
carry out our analysis of justifying LSTMs and GRUs deci-
sions with SHAP. We can apply gradient explainer on these
models, but the expected gradient is currently only supported
for image data.
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Figure 7. Comparison of LIME’s explanation for LSTMs predictions at the beginning and end of an engine’s life span.

Figure 8. Local explanations of SHAP on SVR for a suc-
cessful prediction. Each force-plot represents an instance and
each instance is 30 instances apart from its previous.

4.2.3. Attribute-Wise

For attribute wise cases such as Partial dependency plot (PDP)
and Accumulated Local Effect (ALE), we obtain more global
explanations of each input signal. These approaches explain
only tabular data and do not accept series as input. To use
these approaches and compare their outputs with LIME and
SHAP, we describe the temporal behavior of signals as the
mean value of each window and transform the series into tab-
ular data. We have interpreted SVR using PD plots, as this is
the only black-box model with appropriate input to PD func-
tion. The output of this approach is illustrated in 11, where
each subplot demonstrates the partial dependency of each fea-
ture over the model’s predictions. Here we will see all the
sensors with the highest correlation with the target variable
are having the highest influence on the predictions. The slope
of the partial dependency of all features, except s9 and s14
are almost the same. We further see that for s3, s4, s11, s13,
and s15, partial dependency linearly degrade as the time to
engine’s failure approaches to break down. We see that PDP
agrees with LIME (except that here negatively correlated fea-
tures are also contributing as LIME mostly mentioned the
Positively correlated ones). We can argue that by looking at
the beginning and end of the line plot for the negatively cor-
related features calculated for SVR, they are not influencing
the start and end of the engine’s life as high as the positively

Figure 9. Global explanation of SHAP on SVR (Featuere
Summary Plot)

correlated features.

As the partial dependence approach does not take the cross-
influence of the features into account, we have used the ALE
plot to interpret SVR. As mentioned for PDP, ALE is also
developed only for tabular data, and therefore, LSTMs and
GRUs cannot be interpreted by these approaches. We have
used our trained SVR on the mean of each time series window
to interpret the decision of this model. Generated plots by this
approach are depicted below in Figure 12. ALE plot shows
us the S3, s11, s15, and then s12 has the highest and most
constant effect on the prediction value. Therefore, we see that
ALE agrees more With LIME on SVR’s predictions. Almost
in all sensors (some more than others), we notice the noise at
the beginning and end of engine lifetime where explains why
often at the beginning, models had difficulties estimating CTF
and also in some cases at the breakdown phase.

5. DISCUSSION

Our experiments on these four approaches to explain the out-
put of TTF-predictive models show that LIME is the most
appropriate. Explanations provided by their bar plots are rela-
tively understandable. Feature coefficients provided by LIME
are similar to the coefficients extracted from Bayesian linear
regression (as well as feature importance from decision trees)

8



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Figure 10. Global explanation of SHAP on SVR (Depen-
dence Plot)

and, therefore, consistent in explanations. Contrary to LIME,
SHAP’s explanations are fairly distributed across all possi-
ble cases of the instance for one target feature. However,
the computational complexity of this approach is a significant
drawback. Furthermore, the kernel explainer does not support
models on 3-dimensional data (such as LSTMs and GRUs),
and the deep explainer does not support all the latest versions
of TensorFlow. However, explaining SVR’s decisions was a
similar process as using LIME, Bayesian regression or deci-
sion trees.
To use attribute-wise approaches, we have represented the
temporal behavior of windowed signals with their mean val-
ues and could interpret the models. We stress that this ap-
proach can be applied to this dataset as the sensor’s values
tend to increase (or decrease) over time continuously. We ap-
plied both PDP and ALE on SVR (as these approaches also
only support 2d arrays with static values) and compared their
outputs with SHAP, Bayesian linear regression, and decision
tree feature summaries. PDP does not take interactions be-
tween the features into account, and therefore its plot pointed
out the influence of almost all the sensor inputs except s9 and
s14. ALE’s output extracts more details from feature interac-
tions and their dependency on the target value, and therefore
more accurate feature influence on the predictions. A com-
parison of these four approaches shows that at the moment,
only LIME can effectively provide justifications on black-box
model outputs trained on sensor data. SHAP’s deep explainer
does not support recent TensorFlow versions and has a very
high computational complexity. ALE and PDP plots provide

Figure 11. Partial Dependency plots for SVR

global explanations on a model’s output but only supports
tabular data and therefore are not suitable for RNN architec-
tures such as LSTMs and GRUs.

6. CONCLUSION

In this work, we systematically examined the interpretabil-
ity approaches such as LIME, SHAP, PDP, and ALE to ex-
plain the decisions made by the black-box ML models on the
PHM08 C-MAPSS dataset. Moreover, we provided a com-
parative study on these approaches and highlighted their pos-
itives and drawbacks in explaining time series data.
In the beginning phase of our analysis, we compared the pre-
dictions of trained models and noticed that often models failed
cases are similar to each other. This holds for their success-
ful predictions. We examined the outputs and components
of these approaches by investigating properties such as their
art of explanation bar plot on feature contribution), supported
number of feature dimensions per output, the scope of their
explainability, and their computational complexity. By in-
terpreting model decisions using LIME, SHAP, and attribute-
wise methods, we notice that the models all consider the same
sensors to estimate the countdown to machine failure. More-
over, these approaches all agree with each other on the es-
sential features explaining each model. However, only LIME
could provide justifications for LSTMs and GRUs, and the
other methods do not support such TTF-predictive models.

9
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Figure 12. Accumulated Local Effect plots for SVR
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