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ABSTRACT 

In practice, maintenance of rail vehicles is based on reactive 
and preventive maintenance strategies. Condition-oriented 
maintenance approaches are only slowly finding their way 
into the market. When researching the state of the art, it is 
noticeable that the majority of the approaches presented is 
considering individual components - the system focus 
necessary for maintenance optimization is not taken into 
account. 

Depending on the target system (number of components) 
and planning period, a complex optimization problem (OP) 
results. The OP is an NP-heavy problem for which the use of 
Genetic Algortihms can deliver suitable solutions for small 
search spaces. When applying it on a complex system with a 
larger solution space, this heuristical approach alone is not 
sufficient for the analytical optimization of a system 
representing a locomotive. 

Therefore, in this paper agent-based distributed problem 
solving is applied to analytically optimize the maintenance of 
the target system. Therefore, a multi-agent system (MAS) 
based on the O-MaSE-model will be developed, which 
captures the configuration of a target system and formulates 
the overall OP using the fictional data from a drivetrain of a 
shunting locomotive as an example. Following the principle 
of co-evolutionary problem solving, the overall problem is 
divided into smaller subproblems (SP). These SP have the 
right size to be solved by an own agent using genetic 
algorithms. In addition to, the solution focuses on the 
autonomous negotiation of an acceptable solution for the 
entire system by the SP agents. 

1. MAINTENANCE OF SHUNTING VEHICLES 

Freight transport is increasingly competing with other modes 
of transport, especially road transport. A disadvantage in this 
context are the high life cycle costs (LCC) of locomotives, 

which are required for regular operation and shunting, i.e. the 
composition of a train. A large part of these life-cycle costs 
results not only from operation, but from maintenance.  

Shunting locomotives, like the majority of all rail vehicles, 
are maintained on time-based intervals. The vehicle 
represents a system of individual components. The 
components can have one or more different failure modes. In 
practice, inspections, maintenance and repairs are combined 
in so-called maintenance levels. The underlying maintenance 
strategies are reactive and preventive. Due to frequently 
discussed disadvantages, economic and ecological 
disadvantages result from these strategies (Swanson (2001)). 

Predictive maintenance has developed in response to this. It 
has still a low level of maturity and is therefore mainly 
subject of research, whereas only small real application 
scenarios exist. 

As one of several strategies, Prognostics- and Health 
Management (PHM) has established itself as a 
methodological support for predictive maintenance. 
(Goodman et al. (2019)) The PHM-model can be divided into 
two areas. The first area deals with the collection and analysis 
of data in order to determine conditions. Most of research can 
be found in this area. Usually, the focus is set on isolated 
components. Frequently considered components are, for 
example, pantographs, couplings and wheelset bearings. 
Atamuradov (2017) provides a good cross-industry 
overview. 

The second area of the model focusses on decision making. 
Up to now, the focus has been little on the transfer into 
operational processes, also due to a still small but growing 
number of use cases. Therefore, in this paper a multi-agent 
system (MAS) for the coordination of condition-based 
maintenance of a system consisting of individual components 
will be designed and exemplarily applied. The MAS will act 
as a decision support system (DSS) for maintenance planners 
of condition-based maintained systems.  Julian Franzen et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
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For this purpose, maintenance planning is initially described 
as an optimization problem. It is shown that this problem 
represents a typical application case for heuristics, but the 
complexity requires a distributed problem solution. Then a 
MAS for the realization of distributed problem solution using 
the O-MaSE model is presented. This paper concludes with 
the implementation and simulation-based testing of the 
distributed problem solution. 

2. FORMULATION OF THE OPTIMIZATION PROBLEM 

Various types of optimization problems are defined in the 
literature. The analytical maintenance optimization of a rail 
vehicle as a system of components can be classified as a 
periodic maintenance scheduling problem (PMSP). The 
optimization goal in the context of predictive maintenance is 
a cost and availability optimized maintenance plan for the 
target system rail vehicle, which is abstracted by a system of 
single components. In the following, the problem 
representation, the objective function and the constraints 
relevant to the optimization problem are introduced. The 
description is based on the state of the art for PSMP (e.g. 
Mansour (2011)). Finally, the role of the genetic algorithm in 
solving PSMP is explained. 

2.1. Problem representation 

The maintenance planning is realized by a binary problem 
representation 𝑋 . A rail vehicle has 𝑛  components whose 
maintenance has to be planned over a time horizon of several 
years. This time horizon can be divided into 𝑠𝑡𝑒𝑝𝑠 time steps. 
The duration of a time step is 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 hours. A component 
can be maintained at any time 𝑡 (𝑋(𝑡) 	= 	1) or not (𝑋(𝑡) 	=
	0). Figure 1 outlines the problem representation 𝑋 as input 
to the objective function. The format of 𝑋  is  
𝑛 × 𝑠𝑡𝑒𝑝𝑠 (see Figure 1). 

 
Figure 1. Binary problem representation 

The objective function of the optimization problem uses the 
input variable 𝑋  (maintenance strategy) to determine the 
costs associated with the optimization problem (Eq. (1)):   

𝑓(𝑋) 	= 	𝑐𝑜𝑠𝑡(𝑋) (1) 

2.2. Cost function 

To determine the costs 𝐶𝑜𝑠𝑡 for the maintenance strategy to 
be valuated, the system first considers which component is 
being repaired at what time. This maintenance results in costs 
𝐶𝑜𝑠𝑡!  from the repair or replacement of the component 

(𝐶"#$%) and the work to be performed (𝐶&#'() according to 
equation (2). 

𝐶𝑜𝑠𝑡!(𝑋) 	= 	𝐶"#$%(𝑋) + 𝐶&#'((𝑋) (2) 

However, a correction is necessary, as synergy effects 
between joint maintenance of several components are not 
taken into account. An example is the parallel maintenance 
of axles and wheel discs. For both maintenance actions, the 
same preparatory work (jacking up the locomotive, removing 
the wheel sets, pressing off the components, etc.) is required, 
which involves a not inconsiderable amount of work. If 
maintenance effort is only considered for each component, 
then work that occurs only once is considered several times. 

In this approach, differing from state of the art, availability is 
taken into account via costs. For this purpose, the downtime 
is determined and the cost of the replacement service is 
calculated for the downtime. These costs result from the 
temporary rental of a replacement vehicle, for example. In 
this way, the downtime and thus the availability are converted 
into a cost factor 𝐶𝑜𝑠𝑡)* and taken into account according to 
Eq. (3). 

𝐶𝑜𝑠𝑡)*(𝑋) 	= 	𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 ∗ 𝐶'+%,-.+(𝑋) (3) 

The total costs are then calculated according to Eq. (4).  

𝐶𝑜𝑠𝑡	 = 	𝐶! + 𝐶)* (4) 

2.3. Constraints 

The constraints of an optimization problem limit the space of 
valid solutions. For the coordination of maintenance, the 
constraints result from the wear and failure behavior of the 
considered components. 

In the past, the description of the failure behaviour of 
technical components and systems has been established by 
the Weibull distribution. This paper also describes the failure 
behaviour by the Weibull curve. Eq. (5) and (6) show the 
probability of survival 𝑅 and the probability of failure 𝐺 of a 
component 

𝑅(𝑡) = 	 𝑒/(
1
*)
!
 

𝑇: 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐	𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒, 

𝑏: 𝑓𝑜𝑟𝑚	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

(5) 

𝐺(𝑡) = 	1 − 𝑅(𝑡) (6) 

The constraints result from a limitation of the acceptable 
failure probability of the respective component. This can be 
set at a general limit value 𝐺$-3 , or assume an individual 
value for each component based on the risk tolerance of the 
respective vehicle operator. Due to the exponential terms in 
equations (5) and (6), there are non-linear conditions 𝑐 which 
result according to equation (7). 

	𝑐	 = 	𝐺(𝑡) − 𝐺$-3		! < 		0 (7) 
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2.4. Genetic algorithm for problem solving 

Optimization problems are divided into classes according to 
their complexity. Like other well-known problem types like 
the Traveller Problem or the Knapsack Problem, scheduling 
problems belong to the class of NP-hard problems (Grigoriev 
et al. (2006)). 

The objective function presented here is discontinuous and 
has many local minima. A very large configuration set of a 
size of 24∗61+%6  makes it difficult to solve the problem by 
exhaustive methods. In literature, heuristics have proven to 
be suitable for solving such problems. Heuristics are 
mathematical methods which help to find acceptable 
solutions for a problem in a short time using the nature-
inspired principle of evaluation. Prominent examples are 
genetic algorithms (GA), ant algorithms and simulated 
annealing. A problem of the application of heuristics is that 
no statement can be made as to whether the solution found is 
a local or global minimum (see also validation problem, 
Fischer and Kruschwitz (1981)). 

In the literature, the GA was established as a suitable 
approach to solve PMSP. For small configuration sets this 
approach provides good results, but with an increasing 
number of optimization variables the ability of the GA 
decreases significantly. Yang et al. (2008) estimate the limit 
at about 500 optimization variables for general scheduling 
problems, Franzen et al. find that the limit of applicability for 
PMSP is in a lower range. Therefore, a MAS for distributed 
problem solving will be designed and exemplarily applied in 
the following. For the evaluation of the solution, the criteria 
for heuristic solution evaluation according to Kirsch (1973) 
are applied. 

3. DISTRIBUTED PROBLEM SOLVING AND MULTI-AGENT-
SYSTEMS 

In this chapter an introduction to multi-agent systems and the 
concept of distributed problem solving, especially co-
evolutionary problem solving, is presented. 

3.1. Definition of  multi-agent systems (MAS) 

Prior to the conception of the MAS, a short definition of the 
MAS will be introduced and the application field of 
distributed problem solving will be examined. According to 
VDI 2653-Part 1, (multi-)agent systems are "a set of agents 
that interact to perform one or more tasks. An agent is "a 
delimitable hardware and/or software unit with defined 
targets". An agent is designed to achieve these goals through 
autonomous behavior, interacting with its environment and 
other agents. This is the main difference between agent 
orientation in software development (AOSD) and 
conventional object-oriented software development (OOSD). 

Agents are a modelling concept for solving technical, but also 
organisational and information technology tasks and are 
independent of a specific form of realisation. Parallel to 

object-oriented software development there are methods to 
develop MAS. An overview of existing methods is provided 
by VDI 2653-Part 2 (2018). 

3.2. Introduction to distributed problem solving  

The centralized approach of solving a complex problem by a 
single agent is often not effective. Analogous to classical 
software development, the task can significantly exceed the 
capabilities and resources of the agent. (Sycara et al. (1996)) 
The approach is therefore to solve a complex problem in 
MAS by dividing tasks among specialized agents, let them 
communicate and cooperate to realize distributed problem 
solving. Well-known approaches are Multidisciplinary 
Design Optimization, Distributed Constraint Optimization 
and co-evolutionary optimization.  

For the solution of PMSP, co-evolutionary optimization has 
proven to be a promising approach. Beyond the evolutionary 
solution of problems, co-evolutionary problem solving 
interprets the optimization problem as an ecosystem in which 
different species live. These species adapt to their 
environment via evolutionary methods, but take into account 
the existence of representatives (individuums) of other 
species. (Potter and Young (2000)) The representatives can 
get chosen randomly or e.g. by their fitness value. 

To apply co-evolutionary problem solving, the overall 
problem is divided into sub-problems, which form the 
species. The solution of the sub-problems is carried out 
taking into account the solutions of the other sub-problems 
(representatives). The overall solution finally forms the 
permissible combination of interdependent individuals who 
have in sum the best fitness (see Figure 2). 

 
Figure 2. Distributed problem solution (Brenner, 1998) 

4. CONCEPTION OF THE AGENT SYSTEM 

Many approaches like Gaia, SODA and O-MaSE are 
available for the development of agent systems. The O-MaSE 
model is used for the development of the MAS in this paper, 
because it accompanies the development in all phases, can be 
used independently of the application language and platform 
and has already proven its suitability in several scenarios. 
Figure 3 shows the basic elements of a MAS organization in 
the O-MaSE metamodel. It becomes clear that the model 
documents individual activities and tasks during 
development, but deliberately does not document 
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(chronological) phases. In this paper, the development was 
carried out according to the Waterfall Model. In the 
following, requirements and roles of the MAS are identified. 
Then, the roles behaviours to realize co-evolutional 
optimization are described. 

 
Figure 3. O-MaSE-Metamodel (DeLoach & Garcia, 2014) 

4.1. Requirements for MAS 

The requirements for the agent system result primarily from 
the formulation of the scientific question: How can condition-
based maintenance of a rail vehicle as a system of 
components be planned at optimal costs and availability? A 
refinement of the objectives of the agent system by the 
development of use cases allows the establishment of a list of 
requirements and consequently the Goal Hierarchy Model. 
Figure 4 shows an exemplary use case diagram for 
requirements generation. 

 
Figure 4. Exemplarily Use Case Diagram 

Figure 5 shows the Goal Hierarchy Model for the MAS. 

 
Figure 5. Goal Hierarchy Diagram 

Looking at Figure 4, not only requirements or goals can be 
formulated from the diagram, but also a first estimation of 
involved roles and required activities can be identified. 
Therefore, the role diagram for the MAS can be derived (see 
Figure 6). From this, it becomes clear which roles are needed 
to fulfil the requirements and which communications take 
place between the roles. 

 
Figure 6. Role Model 

In the following the development of distributed problem 
solving will be discussed. 

4.2. Role Descriptions 

After the roles have been identified, they are further specified 
in this section. 

4.2.1. Problem-Coordinator 

The need to instantiate an analytical maintenance 
optimization is communicated by the maintenance manager 
within the requestDecisionSupport communication.  

If a problem solution is instantiated, the problem coordinator 
compiles the overall problem. The problem coordinator 
obtains the data from access to the virtual representation of 
the vehicle within the framework of the communication 
setPlan. 
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The problem coordinator also aims to support the process of 
distributed problem solving by providing an auxiliary process 
for organizing communication in the form of a blackboard. A 
blackboard is a common workspace in the MAS where agents 
can exchange information, knowledge and data. According to 
the classification of VDI 2653, the information comprises 
input data (COP), internal simulation data (partial problems 
and solutions for co-evolution, configuration data) and result 
data (overall solution).  

Figure 7 summarizes the principle of the simulation 
blackboard (SBB), which is based on the schema of Brenner 
et al. (1998). The roles involved in the problem-solving 
process are described in the following subsections. The 
problem-solving coordinator only comes back into action 
after the distributed problem solution has been run through 
for the purpose of communicating results. 

 
Figure 7. Simulation Blackboard 

4.2.2. Classifier 

The procedure for breaking down the overall problem into 
smaller partial problems of lower complexity includes the 
evaluation of the properties of the components and sorting by 
evaluation. The list sorted in this way is broken down into 
𝑛𝑟𝑆𝑢𝑏𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑠 subproblems of the same size. The Agent 
Classifier role returns the number of subproblems and its 
components. 

4.2.3. Subproblem-Solver 

The Subproblem-Solver is responsible for solving the sub-
problems. For this purpose, the role creates a sub-problem 
instance based on the parameters of the sub-problem and 
boundary conditions and solves it using the genetic 
algorithm. The problem representation, the objective function 
and the constraints correspond to the specifications according 
to section 2. 

4.2.4. Moderator 

With the previous roles, a mechanism was created to solve 
sub-problems. In this section, the development of the 
Moderator-role to develop a coordinated overall solution co-
evolutionarily is shown. The coordination task requires the 
definition of the negotiation communication and strategy to 
force a compromise between at least two competing role 

objectives in order to combine partial solutions into an overall 
solution.  

Co-evolutional Strategy 

For the development of an overall solution, the solution 
environment is interpreted as an ecosystem in which the sub- 
problems represent individual species. Each species has a 
population which exists together with the population of the 
other species in the ecosystem. The adaptation to the 
ecosystem is done by using the genetic algorithm. When 
evaluating individuals, representatives of the other 
populations are taken into account as a fundamental 
difference to the conventional genetic algorithm. There are 
several possibilities for the selection of the representatives. 
These are either the best individuals or randomly chosen 
representatives.  

In order to achieve the goal of a co-evolutionary solution to 
the complete optimization problem COP, the strategy of the 
moderator roles provides an iterative procedure, which starts 
with the creation of the initial representatives. Within the 
framework of the procedure described here, these are the best 
individuals of the respective population. These are requested 
and saved by the dispatcher after the partial problem solvers 
have been instantiated.  

Subsequently, interdependent compromise solutions for the 
remaining subproblems are determined, taking into account 
the best representations found in the initial run. This results 
in step-by-step solution paths, which can be displayed in a 
solution tree.  

In the following section the communication as an essential 
part of co-evolutionary optimization will be explained.  

Co-evolutional Communication 

The central object of communication is the communication 
of the representative from another species. As a way to 
transport this information, an auxiliary component is 
introduced, which is explained below. 

Each individual of a population has a binary representation of 
the format 𝑛	 × 	𝑠𝑡𝑒𝑝𝑠 . Since steps can be assumed to be 
constant, the variation of the size of the search space is done 
via the parameter 𝑛 , which represents the number of 
components considered in this problem. The variable 𝑛 has 
to be chosen in such a way that a good solution can be found 
using GA. One possibility for the communication of the 
representative would be to combine the representative with 
an individual of the considered species and to evaluate its 
fitness. According to this, a problem representation of the 
format (2 ∗ 𝑛) 	× 	𝑠𝑡𝑒𝑝𝑠 results, which overstrains the GA. 
Therefore, the information of the considered representation is 
packed to a single component of the format 1	 × 	𝑠𝑡𝑒𝑝𝑠 , 
which is used as auxiliary component HK for co-evolutionary 
problem solving. Figure 10 illustrates the procedure for 
dimension reduction. 
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Figure 10. Dimension Reduction 

The problem representation is then composed of the actual 
variables of the original subproblem to be optimized and the 
auxiliary component as representative of the species to be 
considered. While the GA optimizes the three original 
components, the auxiliary component remains static and acts 
as a fixed boundary condition. Thus, the genetic algorithm is 
forced to find a solution that implies a compromise.  

Selection of a solution 

The strategy is to create the solution tree and to identify the 
optimal solution path on the basis of this tree. In the case of 
the hierarchical organization intended for the agent system, 
the moderator does not leave the decision of a compromise to 
the agents involved, but chooses the most cost-effective 
variant in total and combines it in an overall solution vector. 

5. IMPLEMENTATION 

The subject of this chapter is the implementation of the agent 
system design developed in section 5 in a software prototype. 
According to the O-MaSE methodology for the development 
of organization-based multi-agent systems, which already 
accompanied the design of the multi-agent system in the 
previous chapter, this section corresponds to the subsequent 
environment-specific implementation. 

5.1. Implementation environment 

In this subsection, the implementation environment for 
simulation of the MAS will be described first. There is a 
variety of environments and frameworks for programming 
and subsequent simulation of MAS. Weyns and Michel 
(2015) give a broad overview of available solutions. For the 
implementation of the software prototype, the software 
AnyLogic turned out to be a suitable tool after comparing the 
requirements of the solution. The essential requirements for 
the software were the features of an agent-based simulation 
possibility, the plan-based implementation suitable for the 
use of the O-MaSE agent development model as well as the 
extensibility of the tool, which is fully guaranteed and offers 
maximum flexibility through the implementation of 
AnyLogic based on the Java programming language. 

The heuristic algorithms for problem solving are 
implemented in MATLAB using the Global Optimization 
Toolbox. This toolbox provides powerful solvers for the 
application of heuristics, especially genetic algorithms. It 
offers the possibility to easily influence method-specific 
solver options such as mutation and inheritance mechanisms 
and thus fit them for the problem. The MATLAB software is 
connected to the AnyLogic simulation environment via the 

MATLAB Engine API to call the MATLAB scripts and 
functions containing the algorithms. 

The implementation of the Blackboard as an exchange 
medium for the coordination of the overall solution and the 
subsequent provision is carried out on a MySQL database. 
The Java-based agent system is connected to the database via 
JDBC driver. 

5.2. Implementation of the software prototype 

In software development, prototypes are a way to obtain 
executable models at an early stage and use them for 
communication purposes. For this purpose, roles are first 
assigned to agent classes. The result is shown in Figure 11. 
The implementation of the four agent classes is done plan-
based in AnyLogic, the implementation of the methods and 
functions in Java and MATLAB. Verification actions were 
performed continuously during the implementation. 

 
Figure 11. Agent Class Model 

6. DEMONSTRATION 

A simulative validation of the software prototype is carried 
out to demonstrate credibility of the MAS. According to VDI 
3633 (2014), the validation of a system means "the 
verification of sufficient correspondence between model and 
original. It must be ensured that the model reflects the 
behavior of the real system accurately enough and without 
errors (Is it the correct model for the task?)". It should be 
emphasized that validation can only be formally operated to 
a certain degree and is often based on subjective assessments. 
A validated system is therefore not a formal proof of its 
correctness, but rather a proof that validation activities have 
been carried out. In this paper, validation aims not to provide 
formal proof of the validity of the model and its assumptions, 
but to confirm the credibility of the model. For this purpose, 
the considered target system is first transferred into a virtual 
representation in order to subsequently evaluate the function 
of the MAS on the basis of a validation scenario. It should be 
emphasized again that in the following, no validation is 
carried out using a real scenario, but the simulation is based 
on assumptions because real data is not available. However, 
the assumptions were not freely invented, but were extracted 
from historical data together with maintenance experts in an 
effort to achieve the greatest possible objectivity. 
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6.1. Transfer of the target system into its virtual 
representation 

The subject of the study is the drive train as a section of the 
system of a diesel-hydraulic locomotive for shunting 
operation. As already described, valid failure data does not 
exist. In order to assume realistic values, maintenance 
documents of a rail vehicle maintenance company have been 
analysed and validated by means of expert interviews. 
Similarly, the costs have been determined in the same way. 
In order to protect company secrets, the values have been 
alienated. The components taken into account and the 
properties on which they are based are shown in Appendix 1 
for reasons of space. To determine the bounds, a risk profile 
𝐺$-3  was determined in consultation with maintenance 
experts. 𝐺$-3 includes permissible probabilities of 25 to 45 
%. 

6.2. Validation scenario 

The scenario under consideration comprises the initial 
coordination of the condition-based maintained system at 
time 𝑡	 = 	0. The result of the planning based on Table 1 is 
used to demonstrate the basic function of MAS. The 
subproblem solutions are evaluated under consideration of 
the optimal subproblem size and the negotiation mechanism. 

6.2.1. Quality of subproblem solvers 

For the evaluation of the solutions, a test plan with 𝑁	 = 	200 
samples for subproblem solutions of 𝑠𝑢𝑏𝑂𝑝𝑆𝑖𝑧𝑒	 = 	2	. . . 5 
is run through. 

Quality of solution and optimal subproblem size 

As mentioned at the beginning, on the one hand the quality 
of the solution is used as an evaluation criterion for the 
solutions found for the different subproblems. Since 
corresponding reference procedures for the reliable 
identification of the global minimum are missing, alternative 
qualitative characteristics are used for the evaluation of the 
solution, which are determined by manual consideration of 
the solutions: 
• Criterion 1: Utilisation of reserves. It is checked whether 

the failure probabilities G do not exceed the limit value 
𝐺$-3, on the other hand they approach this value as close 
as possible before scheduled maintenance. 

• Criterion 2: Use of synergy effects. It is checked whether 
the advantage of combining planned maintenance has 
been taken into account in the solution. 

• Criterion 3: Verification that the heuristics have not 
planned maintenance that is not required according to the 
constraints. 

Table 2 summarizes the results of this consideration for the 
above mentioned test. 

 
 

Table 2. Qualitative evaluation of the solution quality for 
𝑠𝑢𝑏𝑂𝑝𝑆𝑖𝑧𝑒	 = 	2	. . . 5 

 
Table 2 shows that under the given conditions a subproblem 
size of three components represents the limit of size. 

Probability of solution 

For the final evaluation of the results, the solution distribution 
according to Figure 12 for the subproblem size 
𝑠𝑢𝑏𝑂𝑝𝑆𝑖𝑧𝑒	 = 	2	. . .4. Since the consideration of a different 
number of components entails higher costs and thus an 
absolute comparability is not given, only the relative 
distribution between the respective minimum and maximum 
value of the solutions belonging to the sample is considered. 
It becomes clear that the implemented genetic algorithm for 
𝑠𝑢𝑏𝑂𝑝𝑆𝑖𝑧𝑒	 = 	3 will most likely find a very good solution 
within known solutions. From 𝑠𝑢𝑏𝑂𝑝𝑆𝑖𝑧𝑒	 = 	4  on, the 
probability of finding good solutions decreases rapidly. 

 

 
Figure 12. Solution probability 

6.2.2. Quality of the negotiated solution 

After considering the representatives, the quality of the 
negotiated solution should also be evaluated. For this 
purpose, a comparison is first made as to whether the 
negotiated solution is advantageous from a cost point of view 
compared to the non-negotiated combination of the optimal 
partial solutions. Then the solutions after the negotiation are 
assessed. 

Negotiated Solution 

When combining the optimal solutions for the subproblems, 
it becomes clear that the lack of collaboration in problem 
solving leads to the achievement of individual goals, but the 
overall solution itself leaves room for optimization. Most 

𝑠𝑢𝑏𝑂𝑝𝑆𝑖𝑧𝑒 = 𝑛

Optimization
variables
𝑛 ∗ 𝑠𝑡𝑒𝑝𝑠

Criterion 1 Criterion 2 Criterion 3

2 72 ✔✔✔ ✔✔✔ ✔✔✔
3 108 ✔✔ ✔✔ ✔✔✔
4 144 ✗ ✗ ✗
5 180 ✗ ✗ ✗
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strikingly, synergy effects of simultaneous maintenance 
cannot be exploited. 

 
Figure 13. Cutout from the solution tree 

The left branch in Figure 13 shows the result of finding 
solutions for the subproblems without boundaries 
(representants). A first iteration of the negotiation mechanism 
has shown that subproblem 4 is decisive for the search for a 
solution, i.e. the solution of the other subproblems must be 
based on subproblem 4. Thus the solution of subproblem 4 
𝑋7,#%1  was transferred to an auxiliary component 𝐻𝐾 
according to chapter 4 and communicated to the Subproblem-
Solver agents as a constraint. The results for each subproblem 
for the co-evolution is shown in Figure 13 (right branch). 
Especially by using synergy effects in maintenance, cheaper 
strategies for the subproblems could be discovered. The 
corresponding savings in comparison of both solutions are 
shown in the last column of Figure 13. The sense of the 
negotiation can thus be shown by a (fictitious) cost advantage 
of 57.345 Euro (nearly 5%) when applied. From the 
perspective of finding a compromise, one of the essential 
tasks of the negotiation, the following statements can be 
made: subproblem 2,3,4,7 and 8 did not change their position, 
whereas subproblems 1, 5, 6 and 9 were able to achieve a 
better goal (symmetric compromise).  

7. CONCLUSION 

In this paper, the optimization problem resulting from the 
coordination of the condition-based maintained components 
was presented. Based on this, a MAS was designed using the 
O-MaSE model, which heuristically solves the problem on 
the basis of co-evolutional distributed problem solution. 
Since there is no real validation scenario for the system, it 
was shown using criteria of solution quality and probability 
(Kirsch (1973)) that the MAS can deliver suitable solutions. 
The determination of the optimal problem size where 
heuristics still generate acceptable solutions and the 
comparison of non-negotiated and negotiated solution, which 
underlines the advantage of using negotiation for 
optimization in the context of the scenario presented in this 
paper, should be emphasized. The results of this paper can 
thus be seen as a first indication that distributed problem 
solving by using a MAS is a suitable approach to coordinate 
maintenance planning for complex systems. In order to 
strengthen this impression, the system has to be tested in real 
operation. However, an essential prerequisite for this is the 
availability of corresponding field data, which is currently not 
guaranteed (Missing Data). For this reason, in addition to 
testing the MAS, the focus should also be on generating 
corresponding data, since this forms the basis for further 
considerations. 

APPENDIX 

The following Table 1 is, as mentioned in section 6.1, the 
result of the data acquisition. The data is used as input for the 
optimization problem. 

Table 1. Relevant vehicle data for the optimization problem
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